Interplay between Structural, Electronic, and Magnetic Properties in the p0-d Semi-Heusler Compounds: The Case of Li-Based Compounds
Abstract
:1. Introduction
- 1.
- Semi-Heusler (also known as half-Heusler) compounds, such as NiMnSb, follow the chemical formula. Here, X and Y represent transition metal atoms or lanthanides, while Z is a metalloid. The lattice structure of semi-Heusler compounds is denoted as “”.
- 2.
- Full-Heusler compounds, such as Co2MnSi, have the chemical formula , with the X, Y, and Z atoms similar to those in semi-Heuslers. These compounds crystallize in the “” lattice structure.
- 3.
- Inverse Heuslers are similar to full-Heuslers, but the valence of X is smaller than that of Y. Their lattice structure is known as “” or “”.
- 4.
2. Computational Details
3. Results and Discussion
3.1. Structural Properties
3.2. Electronic Properties
3.3. Magnetic Properties
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DOS | Density of States |
f.u. | formula unit |
FPLO | Full-potential nonorthogonal local-orbital minimum-basis band-structure approach |
GGA | Generalized gradient approximation |
PBE | Perdew–Burke–Ernzerhof |
References
- Heusler, F. Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 1903, 12, 219. [Google Scholar]
- Heusler, F.; Take, E. The nature of the Heusler alloys. Phys. Z. 1912, 13, 897. [Google Scholar] [CrossRef]
- Webster, P.J.; Ziebeck, K.R.A. Alloys and Compounds of d-Elements with Main Group Elements. Part 2. In Landolt-Börnstein, New Series, Group III, Vol 19c; Wijn, H.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 75–184. [Google Scholar]
- Ziebeck, K.R.A.; Neumann, K.-U. Magnetic Properties of Metals. In Landolt-Börnstein, New Series, Group III, Vol 32/c; Wijn, H.R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 64–414. [Google Scholar]
- Kawasaki, J.K.; Chatterjee, S.; Canfield, P.C. Full and half-Heusler compounds. MRS Bull. 2022, 47, 555. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1. [Google Scholar] [CrossRef]
- Bachagha, T.; Sunol, J.-J. All-d-Metal Heusler Alloys: A Review. Metals 2023, 13, 111. [Google Scholar] [CrossRef]
- De Paula, V.G.; Reis, M.S. All-d-Metal Full Heusler Alloys: A Novel Class of Functional Materials. Chem. Mater. 2021, 33, 5483. [Google Scholar] [CrossRef]
- Fortunato, N.M.; Li, X.; Schönecker, S.; Xie, R.; Aubel, A.; Scheibel, F.; Opahle, I.; Gutfleisch, O.; Zhang, H. High-Throughput Screening of All-d-Metal Heusler Alloys for Magnetocaloric Applications. Chem. Mater. 2024, 36, 6765. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys. Phys. Rev. B 2002, 66, 134428. [Google Scholar] [CrossRef]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Slater-Pauling Behavior and Origin of the Half-Metallicity of the Full-Heusler Alloys. Phys. Rev. B 2002, 66, 174429. [Google Scholar] [CrossRef]
- Katsnelson, M.I.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.I.; de Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315. [Google Scholar] [CrossRef]
- Hirohata, A.; Takanashi, K. Perspectives of Heusler compounds. J. Phys. D Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- Spintronics. From Materials to Devices; Felser, C., Fecher, G.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Fong, C.Y.; Pask, J.E.; Yang, L.H. (Eds.) Half-Metallic Materials and Their Properties. In Series on Materials for Engineering; Imperial College Press: London, UK, 2013; Volume 2. [Google Scholar]
- Alloys, H. Properties, Growth, Applications. In Springer Series in Materials Science; Felser, C., Hirohata, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 222. [Google Scholar]
- Galanakis, I.; Özdoğan, K.; Şaşıoğlu, E. Spin-filter and spin-gapless semiconductors: The case of Heusler compounds. AIP Adv. 2016, 6, 055606. [Google Scholar] [CrossRef]
- Gillessen, M.; Dronskowski, R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009, 30, 1290. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, M.; Dronskowski, R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010, 31, 612. [Google Scholar] [CrossRef]
- Ma, J.; Hegde, V.I.; Munira, K.; Xie, Y.; Keshavarz, S.; Mildebrath, D.T.; Wolverton, C.; Ghosh, A.W.; Butler, W.H. Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 2017, 95, 024411. [Google Scholar] [CrossRef]
- Sanvito, S.; Oses, C.; Xue, J.; Tiwari, A.; Zic, M.; Archer, T.; Tozman, P.; Venkatesan, M.; Coey, M.; Curtarolo, S. Accelerated discovery of new magnets in the Heusler alloy family. Sci. Adv. 2017, 3, e1602241. [Google Scholar] [CrossRef] [PubMed]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds. Phys. Rev. B 2017, 95, 045140. [Google Scholar] [CrossRef]
- Faleev, S.V.; Ferrante, Y.; Jeong, J.; Samant, M.G.; Jones, B.; Parkin, S.S.P. Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Phys. Rev. Mater. 2017, 1, 024402. [Google Scholar] [CrossRef]
- He, J.; Rabe, K.M.; Wolverton, C. Computationally accelerated discovery of functional and structural Heusler materials. MRS Bull. 2022, 47, 559. [Google Scholar] [CrossRef]
- Galanakis, I.; Özdoğan, K.; Şaşıoğlu, E. High-TC fully compensated ferrimagnetic semiconductors as spin-filter materials: The case of CrVXAl (X = Ti, Zr, Hf) Heusler compounds. J. Phys. Condens. Matter 2014, 26, 086003. [Google Scholar] [CrossRef]
- Venkateswara, Y.; Gupta, S.; Samatham, S.S.; Varma, M.R.; Enamullah; Suresh, K.G.; Alam, A. Competing magnetic and spin-gapless semiconducting behavior in fully compensated ferrimagnetic CrVTiAl: Theory and experiment. Phys. Rev. B 2018, 97, 054407. [Google Scholar] [CrossRef]
- Damewood, L.; Busemeyer, B.; Shaughnessy, M.; Fong, C.Y.; Yang, L.H.; Felser, C. Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMnZ (Z=N,P,Si). Phys. Rev. B 2015, 91, 064409. [Google Scholar] [CrossRef]
- Dehghan, A.; Davatolhagh, S. d0-d half-Heusler alloys: A potential class of advanced spintronic materials. J. Alloys Compd. 2019, 773, 132. [Google Scholar] [CrossRef]
- Dehghan, A.; Davatolhagh, S. First principles study of d0-d half-Heusler alloys containing group-IV, -V, and -VI sp atoms as prospective half-metals for real spintronic applications. Mat. Chem. Phys. 2021, 273, 125064. [Google Scholar] [CrossRef]
- Galanakis, I. Slater–Pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials 2023, 13, 2010. [Google Scholar] [CrossRef] [PubMed]
- Javari, A.R.; Davatolhagh, S.; Dehghan, A. Half-metallic p0-d half-Heusler alloys with stable structure in ferromagnetic state. J. Phys. Chem. Solids 2022, 166, 110702. [Google Scholar] [CrossRef]
- Aull, T.; Şaşıoğlu, E.; Maznichenko, I.; Ostanin, S.; Ernst, A.; Mertig, I.; Galanakis, I. Abinitio design of quaternary Heusler compounds for reconfigurable magnetic tunnel diodes and transistors. Phys. Rev. Materials 2019, 3, 124415. [Google Scholar] [CrossRef]
- Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 1999, 59, 1743. [Google Scholar] [CrossRef]
- Kopernik, K. Full Potential Local Orbital Minimum Basis Bandstructure Scheme User’s Manual. Available online: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.1743 (accessed on 1 June 2024).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
Compound | Lattice Constant a in Å | Energy Difference in eV | Most Stable Phase | Least Stable Phase | ||||
---|---|---|---|---|---|---|---|---|
Li | Phase | Phase | Phase | |||||
LiCaGa | 6.72 | 7.00 | 7.14 | −0.13 | −0.86 | −0.73 | ||
LiScGa | 6.13 | 6.42 | 6.52 | −0.17 | −1.04 | −0.87 | ||
LiTiGa | 5.80 | 6.06 | 6.17 | −0.28 | −1.00 | −0.72 | ||
LiVGa | 5.69 | 5.93 | 6.03 | −0.30 | −0.67 | −0.37 | ||
LiCrGa | 5.84 | 6.08 | 6.17 | −0.35 | −0.36 | −0.01 | ||
LiMnGa | 5.78 | 5.95 | 5.99 | −0.31 | −0.28 | 0.03 | ||
LiFeGa | 5.66 | 5.81 | 5.89 | −0.42 | −0.06 | 0.36 | ||
LiCoGa | 5.44 | 5.63 | 5.66 | −0.66 | −0.04 | 0.63 | ||
LiNiGa | 5.55 | 5.69 | 5.71 | −0.55 | 0.19 | 0.74 | ||
LiCuGa | 5.75 | 5.87 | 5.87 | −0.32 | 0.29 | 0.61 | ||
LiZnGa | 5.97 | 6.06 | 6.05 | −0.32 | 0.09 | 0.41 | ||
LiCaGe | 6.49 | 6.86 | 6.94 | −0.08 | −1.10 | −1.03 | ||
LiScGe | 5.98 | 6.31 | 6.38 | −0.41 | −1.24 | −0.83 | ||
LiTiGe | 5.72 | 6.01 | 6.10 | −0.48 | −0.94 | −0.46 | ||
LiVGe | 5.69 | 5.96 | 5.98 | −0.61 | −0.76 | −0.15 | ||
LiCrGe | 5.72 | 5.94 | 5.95 | −0.59 | −0.51 | 0.08 | ||
LiMnGe | 5.76 | 5.99 | 5.96 | −0.49 | −0.30 | 0.19 | ||
LiFeGe | 5.59 | 5.75 | 5.76 | −0.62 | −0.04 | 0.58 | ||
LiCoGe | 5.42 | 5.59 | 5.58 | −0.93 | 0.06 | 0.98 | ||
LiNiGe | 5.49 | 5.65 | 5.62 | −0.68 | 0.25 | 0.93 | ||
LiCuGe | 5.67 | 5.81 | 5.77 | −0.47 | 0.31 | 0.78 | ||
LiZnGe | 5.88 | 6.00 | 5.96 | −0.58 | 0.06 | 0.64 |
Compound | Phase | ||||||
---|---|---|---|---|---|---|---|
LiCaGa | −0.062 | −0.046 | −0.134 | −0.242 | 6 | −2 | |
−0.068 | −0.066 | −0.282 | −0.417 | 6 | −2 | ||
LiCaGe | −0.006 | −0.091 | −0.903 | −1.000 | 7 | −1 | |
0.008 | −0.176 | −0.832 | −1.000 | 7 | −1 | ||
LiScGa | −0.076 | −0.458 | −0.466 | −1.000 | 7 | −1 | |
−0.089 | −0.388 | −0.271 | −0.748 | 7 | −1 | ||
LiTiGe | 0.008 | 0.135 | −0.022 | 0.121 | 9 | 1 | |
LiVGa | 0.006 | 1.332 | −0.237 | 1.101 | 9 | 1 | |
−0.066 | 1.288 | −0.222 | 1.000 | 9 | 1 | ||
−0.001 | 1.311 | −0.232 | 1.078 | 9 | 1 | ||
LiVGe | 0.066 | 2.404 | −0.426 | 2.044 | 10 | 2 | |
0.023 | 2.438 | −0.461 | 2.000 | 10 | 2 | ||
0.104 | 2.362 | −0.466 | 2.000 | 10 | 2 | ||
LiCrGa | −0.073 | 3.835 | − 0.422 | 3.340 | 10 | 2 | |
−0.190 | 3.933 | −0.348 | 3.396 | 10 | 2 | ||
−0.002 | 4.203 | −0.280 | 3.921 | 10 | 2 | ||
LiCrGe | −0.013 | 3.747 | −0.596 | 3.138 | 11 | 3 | |
−0.030 | 3.697 | −0.667 | 3.000 | 11 | 3 | ||
0.076 | 3.636 | −0.712 | 3.000 | 11 | 3 | ||
LiMnGa | −0.204 | 3.979 | −0.511 | 3.264 | 11 | 3 | |
−0.227 | 3.830 | −0.603 | 3.000 | 11 | 3 | ||
−0.125 | 3.768 | −0.625 | 3.018 | 11 | 3 | ||
LiMnGe | −0.028 | 4.264 | −0.343 | 3.892 | 12 | 4 | |
−0.034 | 4.290 | −0.317 | 3.940 | 12 | 4 | ||
0.089 | 4.054 | −0.427 | 3.717 | 12 | 4 | ||
LiFeGa | −0.160 | 2.986 | −0.254 | 2.572 | 12 | 4 | |
−0.154 | 2.748 | −0.333 | 2.261 | 12 | 4 | ||
−0.093 | 2.785 | −0.287 | 2.406 | 12 | 4 | ||
LiFeGe | −0.088 | 2.978 | −0.189 | 2.701 | 13 | 5 | |
−0.055 | 2.640 | −0.244 | 2.342 | 13 | 5 | ||
0.024 | 2.604 | −0.254 | 2.326 | 13 | 5 | ||
LiCoGe | −0.018 | 0.395 | −0.053 | 0.324 | 14 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdoğan, K.; Galanakis, I. Interplay between Structural, Electronic, and Magnetic Properties in the p0-d Semi-Heusler Compounds: The Case of Li-Based Compounds. Crystals 2024, 14, 693. https://doi.org/10.3390/cryst14080693
Özdoğan K, Galanakis I. Interplay between Structural, Electronic, and Magnetic Properties in the p0-d Semi-Heusler Compounds: The Case of Li-Based Compounds. Crystals. 2024; 14(8):693. https://doi.org/10.3390/cryst14080693
Chicago/Turabian StyleÖzdoğan, Kemal, and Iosif Galanakis. 2024. "Interplay between Structural, Electronic, and Magnetic Properties in the p0-d Semi-Heusler Compounds: The Case of Li-Based Compounds" Crystals 14, no. 8: 693. https://doi.org/10.3390/cryst14080693
APA StyleÖzdoğan, K., & Galanakis, I. (2024). Interplay between Structural, Electronic, and Magnetic Properties in the p0-d Semi-Heusler Compounds: The Case of Li-Based Compounds. Crystals, 14(8), 693. https://doi.org/10.3390/cryst14080693