A Novel Insensitive Cocrystal Explosive Composed of BTF and the Non-Energetic 2-Nitroaniline
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Single-Crystal X-ray Diffraction of BTF/ONA
3.2. Cocrystal Structure and Characteristics of BTF/ONA
3.3. Detonation Performances and Sensitivity of BTA/ONA
3.4. Thermal Properties of BTF/ONA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhavan, J. The Chemistry of Explosives 4E; Royal Society of Chemistry: London, UK, 2022; ISBN 978-1-83916-446-0. [Google Scholar]
- Klapötke, T.M. Chemistry of High-Energy Materials; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2022; ISBN 978-3-11-073950-3. [Google Scholar]
- O’Sullivan, O.T.; Zdilla, M.J. Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials. Chem. Rev. 2020, 120, 5682–5744. [Google Scholar] [CrossRef]
- Belous, A.; Saladukha, V. Modern Weapons: Possibilities and Limitations. In Viruses, Hardware and Software Trojans: Attacks and Countermeasures; Belous, A., Saladukha, V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 731–820. ISBN 978-3-030-47218-4. [Google Scholar]
- Xu, H.; Duan, X.; Li, H.; Pei, C. A Novel High-Energetic and Good-Sensitive Cocrystal Composed of CL-20 and TATB by a Rapid Solvent/Non-Solvent Method. RSC Adv. 2015, 5, 95764–95770. [Google Scholar] [CrossRef]
- Sun, S.; Xu, J.; Gou, H.; Zhang, Z.; Zhang, H.; Tan, Y.; Sun, J. Pressure-Induced In Situ Construction of P-CO/HNIW Explosive Composites with Excellent Laser Initiation and Detonation Performance. ACS Appl. Mater. Interfaces 2021, 13, 20718–20727. [Google Scholar] [CrossRef]
- Kumar, N.; Dixit, A. Role of Nanotechnology in Futuristic Warfare. In Nanotechnology for Defence Applications; Kumar, N., Dixit, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 301–329. ISBN 978-3-030-29880-7. [Google Scholar]
- Jiao, F.; Xiong, Y.; Li, H.; Zhang, C. Alleviating the Energy & Safety Contradiction to Construct New Low Sensitivity and Highly Energetic Materials through Crystal Engineering. CrystEngComm 2018, 20, 1757–1768. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Zhang, J.; Gong, F.; Zhao, X.; Yang, Z. Design of Conductive Polymer Coating Layer for Effective Desensitization of Energetic Materials. Chem. Eng. J. 2024, 482, 148874. [Google Scholar] [CrossRef]
- Landenberger, K.B.; Bolton, O.; Matzger, A.J. Energetic–Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and Divergent Sensitivity Modifications via Cocrystallization. J. Am. Chem. Soc. 2015, 137, 5074–5079. [Google Scholar] [CrossRef]
- Foroughi, L.M.; Wiscons, R.A.; Du Bois, D.R.; Matzger, A.J. Improving Stability of the Metal-Free Primary Energetic Cyanuric Triazide (CTA) through Cocrystallization. Chem. Commun. 2020, 56, 2111–2114. [Google Scholar] [CrossRef]
- Bellas, M.K.; Matzger, A.J. Achieving Balanced Energetics through Cocrystallization. Angew. Chem. Int. Ed. 2019, 58, 17185–17188. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Bai, Y.; Li, J.-Z.; Fu, X.-L.; Yang, Y.-J.; Tang, Q.-F. Energetic Nitrocellulose Coating: Effective Way to Decrease Sensitivity and Modify Surface Property of HMX Particles. J. Energetic Mater. 2019, 37, 212–221. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, W. Recent Advances in Studying the Nonnegligible Role of Noncovalent Interactions in Various Types of Energetic Molecular Crystals. CrystEngComm 2022, 24, 6119–6136. [Google Scholar] [CrossRef]
- Baraboshkin, N.M.; Zelenov, V.P.; Minyaev, M.E.; Pivina, T.S. Quest: Structure and Properties of BTF–Nitrobenzene Cocrystals with Different Ratios of Components. CrystEngComm 2022, 24, 235–250. [Google Scholar] [CrossRef]
- Landenberger, K.B.; Matzger, A.J. Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane (HMX). Cryst. Growth Des. 2012, 12, 3603–3609. [Google Scholar] [CrossRef]
- Bolton, O.; Matzger, A.J. Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal. Angew. Chem. Int. Ed. 2011, 50, 8960–8963. [Google Scholar] [CrossRef]
- Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX. Cryst. Growth Des. 2012, 12, 4311–4314. [Google Scholar] [CrossRef]
- Satonkina, N.; Ershov, A.; Kashkarov, A.; Mikhaylov, A.; Pruuel, E.; Rubtsov, I.; Spirin, I.; Titova, V. Electrical Conductivity Distribution in Detonating Benzotrifuroxane. Sci. Rep. 2018, 8, 9635. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Fedyanin, I.V.; Karnoukhova, V.A.; Zalomlenkov, V.A.; Gidaspov, A.A.; Bakharev, V.V.; Sheremetev, A.B. Energetic Co-Crystal of a Primary Metal-Free Explosive with BTF. Ideal Pair for Co-Crystallization. Molecules 2021, 26, 7452. [Google Scholar] [CrossRef]
- Satonkina, N.P.; Ershov, A.P. Dynamics of Carbon Nanostructures in the Benzotrifuroxan Detonation. J. Phys. Conf. Ser. 2021, 1787, 012015. [Google Scholar] [CrossRef]
- Ji, W.; Xu, Y.; Liu, L.; Guo, C.; Wei, X.; Wang, D. The Influence of Three Binders on the Properties of BTF-Based Composite Explosive. Cent. Eur. J. Energetic Mater. 2023, 20, 369–385. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, W.; Xu, X.; Ma, P.; Ma, C. Theoretical Study on BTF-Based Cocrystals: Effect of External Electric Field. J. Mol. Model. 2022, 28, 185. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, W.; Gan, Q.; Cheng, N.; Feng, C. Early Thermal Decay of Energetic Hydrogen- and Nitro-Free Furoxan Compounds: The Case of DNTF and BTF. Phys. Chem. Chem. Phys. 2022, 24, 1520–1531. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, C.; Wang, X.; Xu, J.; He, X.; Liu, Y.; Liu, X.; Huang, H.; Sun, J. Five Energetic Cocrystals of BTF by Intermolecular Hydrogen Bond and π-Stacking Interactions. Cryst. Growth Des. 2013, 13, 679–687. [Google Scholar] [CrossRef]
- Sen, N.; Aslan, N.; Yuksel, B.; Teciman, I. Characterization and Properties of a New Insensitive Explosive Co-Crystal Composed of Trinitrotoluene and Pyrene. Struct. Chem. 2024, 35, 553–567. [Google Scholar] [CrossRef]
- Sultan, M.; Wu, J.; Ul Haq, I.; Imran, M.; Yang, L.; Wu, J.; Lu, J.; Chen, L. Recent Progress on Synthesis, Characterization, and Performance of Energetic Cocrystals: A Review. Molecules 2022, 27, 4775. [Google Scholar] [CrossRef]
- Chugunova, E.A.; Timasheva, R.E.; Gibadullina, E.M.; Burilov, A.R.; Goumont, R. First Synthesis of Benzotrifuroxan at Low Temperature: Unexpected Behavior of 5,7-Dichloro-4,6-Dinitrobenzo-Furoxan with Sodium Azide. Propellants Explos. Pyrotech. 2012, 37, 390–392. [Google Scholar] [CrossRef]
- China Ordnance Industry Standardization Research Institute. National Military Standard of China. Experimental Methods of Sensitivity and Safety; GJB/772A-97; State Administration of Science, Technology and Industry for National Defense: Beijing, China, 1997. [Google Scholar]
- Reddy, L.S.; Bhatt, P.M.; Banerjee, R.; Nangia, A.; Kruger, G.J. Variable-Temperature Powder X-ray Diffraction of Aromatic Carboxylic Acid and Carboxamide Cocrystals. Chem. Asian J. 2007, 2, 505–513. [Google Scholar] [CrossRef]
- Durga Surampudi, A.V.S.; Rajendrakumar, S.; Babu Nanubolu, J.; Balasubramanian, S.; Surov, A.O.; Voronin, A.P.; Perlovich, G.L. Influence of Crystal Packing on the Thermal Properties of Cocrystals and Cocrystal Solvates of Olanzapine: Insights from Computations. CrystEngComm 2020, 22, 6536–6558. [Google Scholar] [CrossRef]
- Şen, N. Characterization and Properties of a New Energetic Co-Crystal Composed of Trinitrotoluene and 2,6-Diaminotoluene. J. Mol. Struct. 2019, 1179, 453–461. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Zhou, X.; Zhang, C.; Huang, H.; Li, J.; Nie, F. Characterization and Properties of a Novel Energetic–Energetic Cocrystal Explosive Composed of HNIW and BTF. Cryst. Growth Des. 2012, 12, 5155–5158. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.-Z.; Jiang, S.-L.; Yu, Y.; Chen, J. From Intermolecular Interactions to Structures and Properties of a Novel Cocrystal Explosive: A First-Principles Study. Phys. Chem. Chem. Phys. 2016, 18, 26960–26969. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, H.; Xu, J.; Wang, H.; Wang, S.; Yu, Z.; Zhu, C.; Sun, J. Design, Preparation, Characterization and Formation Mechanism of a Novel Kinetic CL-20-Based Cocrystal. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 310–317. [Google Scholar] [CrossRef] [PubMed]
D–H···A | D (H···A)/Å | ∠DHA/° | |
---|---|---|---|
BTF–ONA | C17–H17···N2 | 2.872 | 166.61 |
C23–H23···N6 | 2.583 | 137.32 | |
N14–H14A···O6 | 2.315 | 146.41 | |
C16–H16···N4 | 2.699 | 141.99 | |
C16–H16···O5 | 2.743 | 217.10 | |
N14–H14B···O8 | 2.311 | 155.16 | |
C15–H15···O7 | 2.791 | 153.07 | |
C21–H21···O11 | 2.696 | 128.67 | |
N16–H16B···O11 | 2.231 | 146.92 | |
ONA–ONA | N18–H18···O16 | 2.703 | 152.56 |
BTF/ONA | BTF | |
---|---|---|
Formula | C12N8O12H6 | C6N6O6 |
Oxygen balance | −77.9% | −38.1% |
MW [g mol−1] | 390.263 | 252.103 |
Density [g·cm−3] | 1.656 | 1.87 |
Enthalpy of formation [kJ mol−1] | 721.21 | 671.78 |
Detonation velocity [m s−1] | 7115.26 | 8959.98 |
Detonation pressure [GPa] | 20.51 | 36.35 |
H50% [cm] | 90 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Zhao, Y.; Ou, Y.; Bi, Z.; Sun, S.; Yan, T. A Novel Insensitive Cocrystal Explosive Composed of BTF and the Non-Energetic 2-Nitroaniline. Crystals 2024, 14, 722. https://doi.org/10.3390/cryst14080722
Du S, Zhao Y, Ou Y, Bi Z, Sun S, Yan T. A Novel Insensitive Cocrystal Explosive Composed of BTF and the Non-Energetic 2-Nitroaniline. Crystals. 2024; 14(8):722. https://doi.org/10.3390/cryst14080722
Chicago/Turabian StyleDu, Sijia, Yunshu Zhao, Yapeng Ou, Zijie Bi, Shanhu Sun, and Tao Yan. 2024. "A Novel Insensitive Cocrystal Explosive Composed of BTF and the Non-Energetic 2-Nitroaniline" Crystals 14, no. 8: 722. https://doi.org/10.3390/cryst14080722
APA StyleDu, S., Zhao, Y., Ou, Y., Bi, Z., Sun, S., & Yan, T. (2024). A Novel Insensitive Cocrystal Explosive Composed of BTF and the Non-Energetic 2-Nitroaniline. Crystals, 14(8), 722. https://doi.org/10.3390/cryst14080722