High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces
Abstract
:1. Introduction
2. Theory and Model Design
2.1. Metal Metasurface
2.2. Theoretical Formula
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohm, D.; Weinstein, M. The Self-Oscillations of a Charged Particle. Phys. Rev. 1948, 74, 1789–1798. [Google Scholar] [CrossRef]
- Davidson, M.P. Quantum Wave Equations and Non-Radiating Electromagnetic Sources. Ann. Phys. 2007, 322, 2195–2210. [Google Scholar] [CrossRef]
- Goedecke, G.H. Classically Radiationless Motions and Possible Implications for Quantum Theory. Phys. Rev. 1964, 135, B281–B288. [Google Scholar] [CrossRef]
- Nemkov, N.A.; Basharin, A.A.; Fedotov, V.A. Nonradiating Sources, Dynamic Anapole, and Aharonov-Bohm Effect. Phys. Rev. B 2017, 95, 165134. [Google Scholar] [CrossRef]
- Koshelev, K.; Favraud, G.; Bogdanov, A.; Kivshar, Y.; Fratalocchi, A. Nonradiating Photonics with Resonant Dielectric Nanostructures. Nanophotonics 2019, 8, 725–745. [Google Scholar] [CrossRef]
- Baryshnikova, K.V.; Smirnova, D.A.; Luk’yanchuk, B.S.; Kivshar, Y.S. Optical Anapoles: Concepts and Applications. Adv. Opt. Mater. 2019, 7, 1801350. [Google Scholar] [CrossRef]
- Azzam, S.I.; Kildishev, A.V. Photonic Bound States in the Continuum: From Basics to Applications. Adv. Opt. Mater. 2021, 9, 2001469. [Google Scholar] [CrossRef]
- Limonov, M.F. Fano Resonances in Photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound States in the Continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Friedrich, H.; Wintgen, D. Interfering Resonances and Bound States in the Continuum. Phys. Rev. A 1985, 32, 3231–3242. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Liu, T.; Xiao, S. Symmetry-Protected Bound States in the Continuum Supported by All-Dielectric Metasurfaces. Phys. Rev. A 2019, 100, 063803. [Google Scholar] [CrossRef]
- Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Phys. Rev. Lett. 2018, 121, 193903. [Google Scholar] [CrossRef] [PubMed]
- Overvig, A.C.; Malek, S.C.; Carter, M.J.; Shrestha, S.; Yu, N. Selection Rules for Quasibound States in the Continuum. Phys. Rev. B 2020, 102, 035434. [Google Scholar] [CrossRef]
- Sadrieva, Z.; Frizyuk, K.; Petrov, M.; Kivshar, Y.; Bogdanov, A. Multipolar Origin of Bound States in the Continuum. Phys. Rev. B 2019, 100, 115303. [Google Scholar] [CrossRef]
- Sadrieva, Z.F.; Belyakov, M.A.; Balezin, M.A.; Kapitanova, P.V.; Nenasheva, E.A.; Sadreev, A.F.; Bogdanov, A.A. Experimental Observation of a Symmetry-Protected Bound State in the Continuum in a Chain of Dielectric Disks. Phys. Rev. A 2019, 99, 53804. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Du, Y.; Qin, J. Ultrasensitive Terahertz Sensing with High-Q Toroidal Dipole Resonance Governed by Bound States in the Continuum in All-Dielectric Metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- Kawanishi, K.; Shimatani, A.; Lee, K.J.; Inoue, J.; Ura, S.; Magnusson, R. Cross-Stacking of Guided-Mode Resonance Gratings for Polarization-Independent Flat-Top Filtering. In Proceedings of the 2019 24th Microoptics Conference (MOC), Toyama, Japan, 17–20 November 2019. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Jiang, H.; Lai, Z.; Chen, H. Controlling the Spectral Width in Compound Waveguide Grating Structures. Opt. Lett. 2013, 38, 163. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Zhou, C. Polarization-Independent Toroidal Dipole Resonances Driven by Symmetry-Protected BIC in Ultraviolet Region. Opt. Express 2020, 28, 11983. [Google Scholar] [CrossRef]
- Ramesh, R.; Qing, N.; Alshehri, H.; Azeredo, B.; Liping, W. Design of Selective Metasurface Filter for Thermophotovoltaic Energy Conversion. ES Energy Environ. 2023, 22, 999. [Google Scholar] [CrossRef]
- Wu, M.; Ha, S.T.; Shendre, S.; Durmusoglu, E.G.; Koh, W.-K.; Abujetas, D.R.; Sánchez-Gil, J.A.; Paniagua-Domínguez, R.; Demir, H.V.; Kuznetsov, A.I. Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum. Nano Lett. 2020, 20, 6005–6011. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Tian, J.; Sun, J.; Li, S.; De Leon, I.; Zaccaria, R.P.; Peng, L.; Gao, F.; Lin, X.; et al. Quasi-BIC Laser Enabled by High-Contrast Grating Resonator for Gas Detection. Nanophotonics 2022, 11, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, J.; Wu, L.; Zheng, C.; Yue, Z.; Li, H.; Song, C.; Ding, X.; Zhang, Y.; Yao, J. Bending Sensing Based on Quasi Bound States in the Continuum in Flexible Terahertz Metasurface. Adv. Opt. Mater. 2023, 11, 2300909. [Google Scholar] [CrossRef]
- Wu, F.; Wu, J.; Guo, Z.; Jiang, H.; Sun, Y.; Li, Y.; Ren, J.; Chen, H. Giant Enhancement of the Goos-Hänchen Shift Assisted by Quasibound States in the Continuum. Phys. Rev. Appl. 2019, 12, 14028. [Google Scholar] [CrossRef]
- Srivastava, Y.K.; Ako, R.T.; Gupta, M.; Bhaskaran, M.; Sriram, S.; Singh, R. Terahertz Sensing of 7 Nm Dielectric Film with Bound States in the Continuum Metasurfaces. Appl. Phys. Lett. 2019, 115, 151105. [Google Scholar] [CrossRef]
- Koshelev, K.; Tang, Y.; Li, K.; Choi, D.-Y.; Li, G.; Kivshar, Y. Nonlinear Metasurfaces Governed by Bound States in the Continuum. ACS Photonics 2019, 6, 1639–1644. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High- Q Quasibound States in the Continuum for Nonlinear Metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef]
- Li, N.; Xu, Z.; Dong, Y.; Hu, T.; Zhong, Q.; Fu, Y.H.; Zhu, S.; Singh, N. Large-Area Metasurface on CMOS-Compatible Fabrication Platform: Driving Flat Optics from Lab to Fab. Nanophotonics 2020, 9, 3071–3087. [Google Scholar] [CrossRef]
- Mikheeva, E.; Koshelev, K.; Choi, D.-Y.; Kruk, S.; Lumeau, J.; Abdeddaim, R.; Voznyuk, I.; Enoch, S.; Kivshar, Y. Photosensitive Chalcogenide Metasurfaces Supporting Bound States in the Continuum. Opt. Express 2019, 27, 33847. [Google Scholar] [CrossRef]
- Chen, W.; Yongzheng, W.; Jingbo, S.; Ji, Z. Recent Progress on Optical Frequency Conversion in Nonlinear Metasurfaces and Nanophotonics. ES Mater. Manuf. 2022, 17, 1–13. [Google Scholar] [CrossRef]
- Han, S.; Cong, L.; Srivastava, Y.K.; Qiang, B.; Rybin, M.V.; Kumar, A.; Jain, R.; Lim, W.X.; Achanta, V.G.; Prabhu, S.S.; et al. All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum. Adv. Mater. 2019, 31, 1901921. [Google Scholar] [CrossRef]
- Karl, N.; Vabishchevich, P.P.; Liu, S.; Sinclair, M.B.; Keeler, G.A.; Peake, G.M.; Brener, I. All-Optical Tuning of Symmetry Protected Quasi Bound States in the Continuum. Appl. Phys. Lett. 2019, 115, 141103. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zheng, C.; Yue, Z.; Wang, S.; Li, M.; Zhao, H.; Zhang, Y.; Yao, J. Free Switch between Bound States in the Continuum (BIC) and Quasi-BIC Supported by Graphene-Metal Terahertz Metasurfaces. Carbon 2021, 182, 506–515. [Google Scholar] [CrossRef]
- Tan, T.C.; Srivastava, Y.K.; Ako, R.T.; Wang, W.; Bhaskaran, M.; Sriram, S.; Al-Naib, I.; Plum, E.; Singh, R. Active Control of Nanodielectric-Induced THz Quasi-BIC in Flexible Metasurfaces: A Platform for Modulation and Sensing. Adv. Mater. 2021, 33, 2100836. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, C.; Chen, D.; You, S.; Wang, X.; Wang, L.; Jin, L.; Huang, L.; Wang, D.; Miroshnichenko, A.E. Active Quasi-BIC Metasurfaces Assisted by Epsilon-near-Zero Materials. Opt. Express 2023, 31, 13125. [Google Scholar] [CrossRef]
- He, Y.; Guo, G.; Feng, T.; Xu, Y.; Miroshnichenko, A.E. Toroidal Dipole Bound States in the Continuum. Phys. Rev. B 2018, 98, 161112. [Google Scholar] [CrossRef]
- Papasimakis, N.; Fedotov, V.A.; Savinov, V.; Raybould, T.A.; Zheludev, N.I. Electromagnetic Toroidal Excitations in Matter and Free Space. Nat. Mater. 2016, 15, 263–271. [Google Scholar] [CrossRef]
- Radescu, E.E.; Vaman, G. Exact Calculation of the Angular Momentum Loss, Recoil Force, and Radiation Intensity for an Arbitrary Source in Terms of Electric, Magnetic, and Toroid Multipoles. Phys. Rev. E 2002, 65, 046609. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Chichkov, B.N. Multipole Decompositions for Directional Light Scattering. Phys. Rev. B 2019, 100, 125415. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Fischer, T.; Reinhardt, C.; Chichkov, B.N. Optical Theorem and Multipole Scattering of Light by Arbitrarily Shaped Nanoparticles. Phys. Rev. B 2016, 94, 205434. [Google Scholar] [CrossRef]
- Savinov, V.; Papasimakis, N.; Tsai, D.P.; Zheludev, N.I. Optical Anapoles. Commun. Phys. 2019, 2, 69. [Google Scholar] [CrossRef]
- Díaz-Escobar, E.; Bauer, T.; Pinilla-Cienfuegos, E.; Barreda, Á.I.; Griol, A.; Kuipers, L.; Martínez, A. Radiationless Anapole States in On-Chip Photonics. Light Sci. Appl. 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, A.E.; Evlyukhin, A.B.; Yu, Y.F.; Bakker, R.M.; Chipouline, A.; Kuznetsov, A.I.; Luk’yanchuk, B.; Chichkov, B.N.; Kivshar, Y.S. Nonradiating Anapole Modes in Dielectric Nanoparticles. Nat. Commun. 2015, 6, 8069. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-W.; Chen, W.T.; Wu, P.C.; Fedotov, V.A.; Zheludev, N.I.; Tsai, D.P. Toroidal Lasing Spaser. Sci. Rep. 2013, 3, 1237. [Google Scholar] [CrossRef] [PubMed]
- Zdagkas, A.; McDonnell, C.; Deng, J.; Shen, Y.; Li, G.; Ellenbogen, T.; Papasimakis, N.; Zheludev, N.I. Observation of Toroidal Pulses of Light. Nat. Photon. 2022, 16, 523–528. [Google Scholar] [CrossRef]
- Hong, I.; Hong, C.; Tutanov, O.S.; Massick, C.; Castleberry, M.; Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Franklin, J.L.; Vickers, K.; et al. Anapole-Assisted Low-Power Optical Trapping of Nanoscale Extracellular Vesicles and Particles. Nano Lett. 2023, 23, 7500–7507. [Google Scholar] [CrossRef]
- Hong, I.; Anyika, T.; Hong, C.; Yang, S.; Ndukaife, J.C. Hybrid Optical and Diffusiophoretic Nanomanipulation Using All-Dielectric Anapole-Enhanced Thermonanophotonics. ACS Photonics 2023, 10, 4038–4044. [Google Scholar] [CrossRef]
- Conteduca, D.; Brunetti, G.; Barth, I.; Quinn, S.D.; Ciminelli, C.; Krauss, T.F. Multiplexed Near-Field Optical Trapping Exploiting Anapole States. ACS Nano 2023, 17, 16695–16702. [Google Scholar] [CrossRef]
- Raybould, T.A.; Fedotov, V.A.; Papasimakis, N.; Kuprov, I.; Youngs, I.J.; Chen, W.T.; Tsai, D.P.; Zheludev, N.I. Toroidal Circular Dichroism. Phys. Rev. B 2016, 94, 35119. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Gao, Z.; Li, H.; Song, S.; Yu, J.; Zhao, T. Dual-Band Polarization-Insensitive Toroidal Dipole Quasi-Bound States in the Continuum in a Permittivity-Asymmetric All-Dielectric Meta-Surface. Opt. Express 2022, 30, 4084. [Google Scholar] [CrossRef]
- Dmitriev, V.; Kupriianov, A.S.; Silva Santos, S.D.; Tuz, V.R. Symmetry Analysis of Trimer-Based All-Dielectric Metasurfaces with Toroidal Dipole Modes. J. Phys. D Appl. Phys. 2021, 54, 115107. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Ferraro, A.; García-Cámara, B.; Beccherelli, R.; Sánchez-Pena, J.M. Ultrahigh-Quality Factor Resonant Dielectric Metasurfaces Based on Hollow Nanocuboids. Opt. Express 2019, 27, 6320. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Huang, Q.; He, H.; Zhao, Y.; Lin, X.; Lu, Y. All-Dielectric Metamaterial Analogue of Electromagnetically Induced Transparency and Its Sensing Application in Terahertz Range. Opt. Express 2019, 27, 16624. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Dong, G.-X.; Wang, B.-X.; Huang, W.-Q. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator. Nanoscale Res. Lett. 2018, 13, 294. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Tan, S.; Cong, L.; Singh, R.; Yan, F.; Zhang, W. Multispectral Terahertz Sensing with Highly Flexible Ultrathin Metamaterial Absorber. J. Appl. Phys. 2015, 118, 83103. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, Y.K.; Manjappa, M.; Singh, R. Sensing with Toroidal Metamaterial. Appl. Phys. Lett. 2017, 110, 121108. [Google Scholar] [CrossRef]
- Xu, J.; Liao, D.; Gupta, M.; Zhu, Y.; Zhuang, S.; Singh, R.; Chen, L. Terahertz Microfluidic Sensing with Dual-torus Toroidal Metasurfaces. Adv. Opt. Mater. 2021, 9, 2100024. [Google Scholar] [CrossRef]
- He, X.; Zhang, Q.; Lu, G.; Ying, G.; Wu, F.; Jiang, J. Tunable Ultrasensitive Terahertz Sensor Based on Complementary Graphene Metamaterials. RSC Adv. 2016, 6, 52212–52218. [Google Scholar] [CrossRef]
- Zhong, Y.; Du, L.; Liu, Q.; Zhu, L.; Meng, K.; Zou, Y.; Zhang, B. Ultrasensitive Specific Sensor Based on All-Dielectric Metasurfaces in the Terahertz Range. RSC Adv. 2020, 10, 33018–33025. [Google Scholar] [CrossRef]
- Beruete, M.; Jáuregui-López, I. Terahertz Sensing Based on Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwon, Y.S.; Ahn, S.; Choi, B.K.; Cho, S.Y.; Jeon, M.Y. Measurement of Refractive Indices and Absorption Coefficients for Glass Materials and Nematic Liquid Crystals in THz Frequency Band. J. Korean Phys. Soc. 2024, 84, 750–757. [Google Scholar] [CrossRef]
- Palik, E.D.; Ghosh, G. (Eds.) Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-544420-0. [Google Scholar]
- Savinov, V.; Fedotov, V.A.; Zheludev, N.I. Toroidal Dipolar Excitation and Macroscopic Electromagnetic Properties of Metamaterials. Phys. Rev. B 2014, 89, 205112. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Evlyukhin, E.; Chichkov, B.N. Multipole Analysis of Light Scattering by Arbitrary-Shaped Nanoparticles on a Plane Surface. J. Opt. Soc. Am. B 2013, 30, 2589. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Ferraro, A.; García-Cámara, B.; Vergaz, R.; Beccherelli, R.; Sánchez-Pena, J.M. Anapole Modes in Hollow Nanocuboid Dielectric Metasurfaces for Refractometric Sensing. Nanomaterials 2018, 9, 30. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Yang, L.; Zhao, T. High Q-Factor Multi-Fano Resonances in All-Dielectric Double Square Hollow Metamaterials. Opt. Laser Technol. 2021, 140, 107072. [Google Scholar] [CrossRef]
- Li, S.; Jiang, H.; Zhu, X.; Shi, Y.; Han, Z. A High-Sensitivity Refractive Index Sensor with Period-Doubling Plasmonic Metasurfaces to Engineer the Radiation Losses. ACS Appl. Opt. Mater. 2023, 1, 736–744. [Google Scholar] [CrossRef]
Material Simulation | FWHM (THz) | |||
---|---|---|---|---|
The Value of g2 (μm) | ||||
4 | 6 | 8 | 10 | |
Aluminum | 0 | 0.01162 | 0.02411 | 0.02996 |
PEC | 0 | 0.00359 | 0.01132 | 0.01966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Gao, Y. High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces. Crystals 2025, 15, 96. https://doi.org/10.3390/cryst15010096
Guo L, Gao Y. High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces. Crystals. 2025; 15(1):96. https://doi.org/10.3390/cryst15010096
Chicago/Turabian StyleGuo, Lincheng, and Yachen Gao. 2025. "High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces" Crystals 15, no. 1: 96. https://doi.org/10.3390/cryst15010096
APA StyleGuo, L., & Gao, Y. (2025). High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces. Crystals, 15(1), 96. https://doi.org/10.3390/cryst15010096