Thermal Behavior, Local-Scale Morphology, and Phase Composition of Spherulites in Melt-Crystallized Poly(Vinylidene Fluoride) Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Polarized Optical Microscopy
2.3. Differential Scanning Calorimetry
2.4. Synchrotron X-Ray Diffraction
2.5. Atomic Force Microscopy
3. Results
3.1. Analysis of Polarized Microscopy Images
3.2. WAXS Studies at Different Temperatures
3.3. Microstructure of the Mixed Spherulite
3.4. Microstructure of the α-Spherulite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, T.; Fujitaa, M.; Takeuchib, A.; Suzukib, Y.; Uesugib, K.; Doia, Y.; Iwataet, T. Structure investigation of narrow banded spherulites in polyhydroxyalkanoates by microbeam X–ray diffraction with synchrotron radiation. Polymer 2006, 46, 5673–5679. [Google Scholar] [CrossRef]
- Gazzano, M.; Focarete, M.L.; Riekel, C.; Scandola, M. Bacterial poly(3–hydroxybutyrate): An optical microscopy and microfocus X–ray diffraction study. Biomacromolecules 2000, 1, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Gazzano, M.; Focarete, M.L.; Riekel, C.; Ripamonti, A.; Scandola, M. Structural Investigation of Poly(3-hydroxybutyrate) Spherulites by Microfocus X-Ray Diffraction. Macromol. Chem. Phys. 2001, 202, 1405–1409. [Google Scholar] [CrossRef]
- Chang, B.; Schneider, K.; Patil, N.; Roth, S.; Heinrich, G. Microstructure characterization in a single isotactic polypropylene spherulite by synchrotron microfocus wide angle X–ray scattering. Polymer 2018, 142, 387–393. [Google Scholar] [CrossRef]
- Crist, B.; Schultz, J.M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016, 56, 1–63. [Google Scholar] [CrossRef]
- Tashiro, K.; Yamamoto, H.; Funaki, K.; Masunaga, H.; Miyake, Y. Three representative types of WAXD/SAXS patterns to establish the bimodal structure concept of stacked lamellae in isotactic polypropylene spherulites. Polym. J. 2024, 56, 491–503. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Williams, J.L.; Wonderling, N.; Androsch, R.; Guo, J. Skin/core crystallinity of injection-molded poly (butylene terephthalate) as revealed by microfocus X-ray diffraction and fast scanning chip calorimetry. J. Therm. Anal. Calorim. 2017, 127, 939–946. [Google Scholar] [CrossRef]
- Wang, Y.; Mano, J.F. Banded spherulites in poly(L-lactic acid): Effects of the crystallization temperature and molecular weight. J. Appl. Polym. Sci. 2007, 105, 3500–3504. [Google Scholar] [CrossRef]
- Rosenthal, M.; Portale, G.; Burghammer, M.; Bar, G.; Samulski, E.T.; Ivanov, D.A. Exploring the Origin of Crystalline Lamella Twist in Semi-Rigid Chain Polymers: The Model of Keith and Padden revisited. Macromolecules 2012, 45, 7454–7460. [Google Scholar] [CrossRef]
- Rosenthal, M.; Burghammer, M.; Bar, G.; Samulski, E.T.; Ivanov, D.A. Switching Chirality of Hybrid Left–Right Crystalline Helicoids Built of Achiral Polymer Chains: When Right to Left Becomes Left to Right. Macromolecules 2014, 47, 8295–8304. [Google Scholar] [CrossRef]
- Rosenthal, M.; Hernandez, J.J.; Odarchenko, Y.I.; Soccio, M.; Lotti, N.; Di Cola, E.; Burghammer, M.; Ivanov, D.A. Non-radial growth of helical homopolymer crystals: Breaking the paradigm of the polymer spherulite microstructure. Macromol. Rapid Commun. 2013, 34, 1815–1819. [Google Scholar] [CrossRef]
- Ivanov, D.A.; Rosenthal, M. Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering. In Polymer Crystallization II: From Chain Microstructure to Processing; Springer: Cham, Switzerland, 2016; pp. 95–126. [Google Scholar] [CrossRef]
- Yamamoto, H.; Yoshioka, T.; Funaki, K.; Masunaga, H.; Woo, E.M.; Tashiro, K. Synchrotron X-ray-analyzed inner structure of polyethylene spherulites and atomistic simulation of a trigger of the lamellar twisting phenomenon. Polym. J. 2023, 55, 27–43. [Google Scholar] [CrossRef]
- Nagarajan, S.; Chuang, T.-C.; Hao, M.-H.; Chuang, W.-T.; Lin, J.-M.; Woo, E.M. Unveiling the secrets of unusual long-pitch periodic assembly of poly(ʟ-Lactide) ring–banded spherulites. Mater. Today Chem. 2024, 35, 101878. [Google Scholar] [CrossRef]
- Melnikov, A.P.; Rosenthal, M.; Rodygin, A.I.; Doblas, D.; Anokhin, D.V.; Burghammer, M.; Ivanov, D.A. Re-exploring the Double-Melting Behavior of Semirigid-Chain Polymers with an in-situ Combination of Synchrotron Nano-Focus X-ray Scattering and Nanocalorimetry. Eur. Polym. J. 2016, 81, 598–606. [Google Scholar] [CrossRef]
- Melnikov, A.P.; Rosenthal, M.; Ivanov, D.A. What Thermal Analysis Can Tell Us About Melting of Semicrystalline Polymers: Exploring the General Validity of the Technique. ACS Macro Lett. 2018, 7, 1426–1431. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, A.J. Developments in Crystalline Polymers; Applied Science Publications: London, UK, 1982; pp. 24–131. [Google Scholar]
- Qi, F.; Xu, L.; He, Y.; Yan, H.; Liu, H. PVDF–Based Flexible Piezoelectric Tactile Sensors: Review. Cryst. Res. Technol. 2023, 58, 2300119. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Chen, X.; Han, X.; Shen, Q.-D. PVDF–Based Ferroelectric Polymers in Modern Flexible Electronics. Adv. Electron. Mater. 2017, 3, 1600460. [Google Scholar] [CrossRef]
- Golubkov, S.S.; Melnikov, A.P.; Statsenko, T.G.; Sanginov, E.A.; Belmesov, A.A.; Don, G.M.; Likhomanov, V.S.; Kireynov, A.V.; Kashin, A.M.; Maryasevskaya, A.V.; et al. Short-side-chain perfluorinated polymeric membranes annealed at high temperature: Structure, conductivity, and fuel cell performance. Int. J. Hydrogen Energy 2024, 87, 431–441. [Google Scholar] [CrossRef]
- Ponomar, M.; Ruleva, V.; Sarapulova, V.; Pismenskaya, N.; Nikonenko, V.; Maryasevskaya, A.; Anokhin, D.; Ivanov, D.; Sharma, J.; Kulshrestha, V.; et al. Structural characterization and physicochemical properties of functionally porous proton-exchange membrane based on PVDF-SPA graft copolymers. Int. J. Mol. Sci. 2024, 25, 598. [Google Scholar] [CrossRef] [PubMed]
- Kislyi, A.G.; Kozmai, A.E.; Mareev, S.A.; Ponomar, M.A.; Anokhin, D.V.; Ivanov, D.A.; Umarov, A.Z.; Maryasevskaya, A.V.; Nikonenko, V.V. Mathematical modeling of the transport characteristics of a PVDF-based cation-exchange membrane with low water content. J. Membr. Sci. 2024, 707, 122931. [Google Scholar] [CrossRef]
- Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2014, 51, 94–126. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Doll, W.W.; Lando, J.B. Polymorphism of poly(vinylidene fluoride). III. The crystal structure of phase II. Macromol. Sci.-Phys. 1970, 4 Pt B, 309–329. [Google Scholar] [CrossRef]
- Bachmann, M.A.; Lando, J.B. A reexamination of the crystal structure of phase II of poly(vinylidene fluoride). Macromolecules 1980, 14, 40–46. [Google Scholar] [CrossRef]
- Takahashi, Y.; Tadokoro, H. Crystal Structure of Form III of Poly(vinylidene fluoride). Macromolecules 1980, 13, 1317–1318. [Google Scholar] [CrossRef]
- Lovinger, A.J.; Keith, H.D. Electron Diffraction Investigation of a High-Temperature Form of Poly(vinylidene fluoride). Macromolecules 1979, 12, 919–924. [Google Scholar] [CrossRef]
- Montina, T.; Wormald, P.; Hazendonk, P. 13C solid-state NMR of the mobile phase of poly(vinylidene fluoride). Macromolecules 2012, 45, 6002–6007. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, P. A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process. Polymer 2004, 45, 5295–5299. [Google Scholar] [CrossRef]
- Yang, D.L.; Tornga, S.; Orler, B.; Welch, C. Aging of poly(vinylidene fluoride) hollow fibers in light hydrocarbon environments. J. Membr. Sci. 2012, 409–410, 302–317. [Google Scholar] [CrossRef]
- Mireja, S.; Khakhar, D.V. Methods to characterize the crystal polymorphs of polyvinylidene fluoride using Fourier transform infrared spectroscopy. Polym. Eng. Sci. 2023, 63, 2857–2870. [Google Scholar] [CrossRef]
- Latour, M.; Dorra, H.A.; Galigne, J.L. Far-infrared and X-ray studies on poled semicrystalline poly(vinylidene fluoride). J. Polym. Sci. Part. B Polym. Phys. Ed. 1984, 22, 345–356. [Google Scholar] [CrossRef]
- Purushothaman, S.M.; Tronco, M.F.; Ponçot, M.; Chakraborty, C.S.; Guigo, N.; Malfois, M.; Kalarikkal, N.; Thomas, S.; Royaud, I.; Rouxel, D. Quantifying the Crystalline Polymorphism in PVDF: Comparative Criteria Using DSC, WAXS, FTIR, and Raman Spectroscopy. ACS Appl. Polym. Mater. 2024, 6, 8291–8305. [Google Scholar] [CrossRef]
- Gregorio, R.; Cestari, M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci. Part B Polym. Phys. 1994, 32, 859–870. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, D.; Wu, L.; Ma, R.; Ning, H.; Hu, N.; Lee, A. Effects of stretching on phase transformation of PVDF and its copolymers: A review. Open Phys. 2023, 21, 20220255. [Google Scholar] [CrossRef]
- Sencadas, V.; Gregorio, R., Jr.; Lanceros–Méndez, S. α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. J. Macromol. Sci. Part B Phys. 2009, 48, 514–525. [Google Scholar] [CrossRef]
- Sencadas, V.; Martins, P.; Pitães, A.; Benelmekki, M.; Gomez Ribelles, J.L.; Lanceros-Mendez, S. Influence of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). Langmuir 2011, 27, 7241–7249. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, H.; Wu, Y.; Wang, Y.; Yuan, C. Preparation and properties of gamma-PVDF/lead zirconium titanate composites. Polymer 2023, 281, 126091. [Google Scholar] [CrossRef]
- Liao, L.; Chen, C.; Qian, J.; Zhang, Y.; Zhang, R.; Zhu, J. Direct writing of PVDF piezoelectric film based on near electric field added by [Emim]BF4. Mater. Res. Express 2020, 7, 016437. [Google Scholar] [CrossRef]
- Biswas, A.; Henkel, K.; Schmeißer, D.; Mandal, D. Comparison of the thermal stability of the α, β and γ phases in poly(vinylidene fluoride) based on in situ thermal Fourier transform infrared spectroscopy. Phase Transit. 2017, 90, 1205–1213. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, H.; Li, H.; Yuan, C.; Wang, T.; Yang, H. Deep Eutectic Solvent—A Novel Additive to Induce Gamma Crystallization and Alpha-to-Gamma Phase Transition of PVDF. Macromol. Chem. Phys. 2022, 223, 2100416. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Hu, J.; Li, H.; Ren, Z.; Sun, X.; Wang, H.; Yan, S. Taming the Phase Transition Ability of Poly(vinylidene fluoride) from α to γ′ phase. Macromolecules 2020, 53, 5971–5979. [Google Scholar] [CrossRef]
- Lovinger, A.J. Crystalline transformations in spherulites of poly(vinylidene fluoride). Polymer 1980, 21, 1317–1322. [Google Scholar] [CrossRef]
- Gregorio, R.C.; CapitãO, R.C. Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J. Mater. Sci. 2000, 35, 299–306. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Kitamura, T.; Yoshida, H.; Kawai, T. The mechanism of α-γ transition of poly-(vinylidene fluoride) in the miscible blends. J. Therm. Anal. Calorim. 2002, 69, 939–946. [Google Scholar] [CrossRef]
- Prest, W.M., Jr.; Luca, D.J. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. J. Appl. Phys. 1978, 49, 5042–5047. [Google Scholar] [CrossRef]
- Bachmann, M.A.; Gordon, W.L.; Koenig, J.L.; Lando, J.B. An infrared study of phase-III poly(vinylidene fluoride). J. Appl. Phys. 1979, 50, 6106–6112. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Liu, K.; Li, H.; Sun, X.; Hu, J.; Wang, S.; Yuan, C.; Yan, S. Ionic Liquid Assisted α–γ′ Phase Transition of Poly(vinylidene fluoride) Thin Films. Macromolecules 2022, 55, 2160–2170. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Zhao, Y.; Yan, C.; Wang, S.; Yang, H.; Wang, X.; Schultz, J.M. Preparation of gamma-PVDF with controlled orientation and insight into phase transformation. Polymer 2017, 123, 282–289. [Google Scholar] [CrossRef]
- Prest, W.M., Jr.; Luca, D.J. The morphology and thermal response of high-temperature–crystallized poly(vinylidene fluoride). J. Appl. Phys. 1975, 46, 4136–4143. [Google Scholar] [CrossRef]
- Lovinger, A.J. Crystallization and morphology of melt-solidified poly(vinylidene fluoride). J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 793–809. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Punin, Y.O.; Gujral, A.; Kahr, B. Growth Actuated Bending and Twisting of Single Crystals. Angew. Chem. Int. Ed. 2014, 53, 672–699. [Google Scholar] [CrossRef]
- Cavallini, M.; Calò, A.; Stoliar, P.; Kengne, J.C.; Martins, S.; Matacotta, F.C.; Quist, F.; Gbabode, G.; Dumont, N.; Geerts, Y.H.; et al. Lithographic Alignment of Discotic Liquid Crystals: A New Time-Temperature Integrating Framework. Adv. Mater. 2009, 21, 4688–4691. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Liu, M.; Wei, B.; Yan, S.; Sun, X. Disclosing Solid-Phase-Transition Mechanism from Nonpolar to Polar Poly(vinylidene fluoride) via In Situ Real-Space Visual Methods. Macromolecules 2024, 57, 4897–4905. [Google Scholar] [CrossRef]
- Guo, D.; Stolichnov, I.; Setter, N. Thermally Induced Cooperative Molecular Reorientation and Nanoscale Polarization Switching Behaviors of Ultrathin Poly(vinylidene fluoride-trifluoroethylene) Films. J. Phys. Chem. B 2011, 115, 13455–13466. [Google Scholar] [CrossRef]
- Vaughan, A.S. Etching and Morphology of Poly(vinylidene fluoride). J. Mater. Sci. 1993, 28, 1805–1813. [Google Scholar] [CrossRef]
- Komov, E.V.; Melnikov, A.P.; Piryazev, A.A.; Maryasevskaya, A.V.; Petrov, A.O.; Malkov, G.V.; Shastin, A.V.; Anokhin, D.V.; Ivanov, D.A. Topochemical polymerization in microparticles of crystalline triazine-based monomers: Study by conventional and ultra-fast chip calorimetry. Thermochim. Acta 2023, 728, 179577. [Google Scholar] [CrossRef]
- Basire, C.; Ivanov, D.A. Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: Time-resolved hot-stage SPM study. Phys. Rev. Lett. 2000, 85, 5587–5590. [Google Scholar] [CrossRef]
- Ivanov, D.A.; Bar, G.; Dosière, M.; Koch, M.H.J. A Novel View on Crystallization and Melting of Semirigid Chain Polymers: The Case of Poly(trimethylene terephthalate). Macromolecules 2008, 41, 9224–9231. [Google Scholar] [CrossRef]
- Lotz, B.; Cheng, S.Z.D. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 2005, 46, 577–610. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anokhin, D.V.; Plieva, D.S.; Rosenthal, M.; Churakov, A.V.; Ivanov, D.A. Thermal Behavior, Local-Scale Morphology, and Phase Composition of Spherulites in Melt-Crystallized Poly(Vinylidene Fluoride) Films. Crystals 2025, 15, 94. https://doi.org/10.3390/cryst15010094
Anokhin DV, Plieva DS, Rosenthal M, Churakov AV, Ivanov DA. Thermal Behavior, Local-Scale Morphology, and Phase Composition of Spherulites in Melt-Crystallized Poly(Vinylidene Fluoride) Films. Crystals. 2025; 15(1):94. https://doi.org/10.3390/cryst15010094
Chicago/Turabian StyleAnokhin, Denis V., Dana S. Plieva, Martin Rosenthal, Andrei V. Churakov, and Dimitri A. Ivanov. 2025. "Thermal Behavior, Local-Scale Morphology, and Phase Composition of Spherulites in Melt-Crystallized Poly(Vinylidene Fluoride) Films" Crystals 15, no. 1: 94. https://doi.org/10.3390/cryst15010094
APA StyleAnokhin, D. V., Plieva, D. S., Rosenthal, M., Churakov, A. V., & Ivanov, D. A. (2025). Thermal Behavior, Local-Scale Morphology, and Phase Composition of Spherulites in Melt-Crystallized Poly(Vinylidene Fluoride) Films. Crystals, 15(1), 94. https://doi.org/10.3390/cryst15010094