Artificial Intelligence and Li Ion Batteries: Basics and Breakthroughs in Electrolyte Materials Discovery
Abstract
:1. Introduction
2. Why Are Learning Techniques Needed in Li-Ion Batteries?
3. Basics of Learning Producer
3.1. Learning Data
3.2. Feature Generation and Engineering
3.3. Learning Algorithms and Error Metrics
- Linear Regression: Linear regression is a fundamental algorithm used for predicting continuous material properties based on input features. It models the relationship between the input variables and the target variable by fitting a linear equation. Linear regression is widely used in materials science for tasks such as predicting material strength, conductivity, or elasticity based on various input parameters.
- Support Vector Machine (SVM): SVM is a powerful algorithm used for both classification and regression tasks in materials science. In classification, SVM finds an optimal hyperplane that separates different classes of materials based on the input features. In regression, SVM can predict continuous material properties by finding a regression function that maximizes the margin between data points and the function. SVM has been used for tasks such as predicting the formability of perovskites and prediction of energy gaps in binary compounds [145].
- Decision Tree (DT): Decision trees are versatile algorithms that can be used for both classification and regression tasks. They partition the input feature space based on a series of binary decisions, creating a tree-like structure. Decision trees are interpretable and can handle both numerical and categorical features. They have been used in materials science for tasks such as the prediction of stability of multi-atoms structures, for instance [146].
- Random Forest (RF): Random forests are ensemble learning algorithms that combine multiple decision trees to make predictions. Each decision tree is trained on a random subset of the data, and the final prediction is obtained by averaging the predictions of individual trees. Random forests are robust, can handle high-dimensional data, and provide feature importance rankings. They have been used in materials science the prediction of the lattice thermal conductivity as an example [147].
- Gradient Boosting (GB): GB is another ensemble learning technique that combines multiple weak learners to create a strong predictive model. It iteratively builds decision trees, where each subsequent tree focuses on correcting the errors of the previous tree. Gradient boosting algorithms such as XGBoost and LightGBM have been applied in materials science for tasks like assessing the ductility and brittleness of magnesium alloys using elastic proxies [148].
- Neural Networks (NN): Neural networks, particularly deep neural networks, have gained significant popularity in materials science research. These algorithms consist of interconnected layers of nodes (neurons) that learn complex patterns from the input data. Neural networks can capture non-linear relationships and have been used for tasks such as image analysis, material property prediction, and molecular design.
- Gaussian Processes: Gaussian processes are probabilistic models that can be used for regression tasks in materials science. They model the uncertainty associated with predictions and provide a distribution over possible values for the target variable. Gaussian processes have been used for tasks such as representing atomic structures, symmetry adapted representations and more [149].
3.4. Materials Design and Discovery
4. Current Research on Electrolytic Materials Designed by ML
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, Q.; Yu, J.; Suram, S.K.; Zhou, L.; Shinde, A.; Newhouse, P.F.; Chen, W.; Li, G.; Persson, K.A.; Gregoire, J.M.; et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl. Acad. Sci. USA 2017, 114, 3040–3043. [Google Scholar] [CrossRef] [PubMed]
- Na, G.S.; Chang, H. A public database of thermoelectric materials and system-identified material representation for data-driven discovery. NPJ Comput. Mater. 2022, 8, 214. [Google Scholar] [CrossRef]
- Oliveira, G.D.S.; Candido, I.C.M.; Lima, R.M.A.P.; De Oliveira, H.P. All-In-One Energy Harvesting/Storage Integrated Systems Based on Eggshell Membranes. ACS Appl. Electron. Mater. 2022, 4, 4708–4718. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Kim, C.; Pilania, G.; Ramprasad, R. Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites. J. Phys. Chem. C 2016, 120, 14575–14580. [Google Scholar] [CrossRef]
- Faber, F.A.; Lindmaa, A.; Von Lilienfeld, O.A.; Armiento, R. Machine Learning Energies of 2 Million Elpasolite (ABC2D6) Crystals. Phys. Rev. Lett. 2016, 117, 135502. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, P.; Zhang, R.-Z. Machine learning material properties from the periodic table using convolutional neural networks. Chem. Sci. 2018, 9, 8426–8432. [Google Scholar] [CrossRef]
- Chakraborty, P.; Liu, Y.; Ma, T.; Guo, X.; Cao, L.; Hu, R.; Wang, Y. Quenching Thermal Transport in Aperiodic Superlattices: A Molecular Dynamics and Machine Learning Study. ACS Appl. Mater. Interfaces 2020, 12, 8795–8804. [Google Scholar] [CrossRef]
- Qian, X.; Yang, R. Machine learning for predicting thermal transport properties of solids. Mater. Sci. Eng. R. Rep. 2021, 146, 100642. [Google Scholar] [CrossRef]
- Wei, H.; Bao, H.; Ruan, X. Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder. Nano Energy 2020, 71, 104619. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Mueller, T.; Hautier, G.; Jain, A.; Ceder, G. Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing. Chem. Mater. 2011, 23, 3854–3862. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Li, C.; Poplawsky, J.; Wu, Y.; Lupini, A.R.; Mouti, A.; Leonard, D.N.; Paudel, N.; Jones, K.; Yin, W.; Al-Jassim, M.; et al. From atomic structure to photovoltaic properties in CdTe solar cells. Ultramicroscopy 2013, 134, 113–125. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.X.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Transition-metal chlorides as conversion cathode materials for Li-ion batteries. Electrochim. Acta 2012, 68, 202–205. [Google Scholar] [CrossRef]
- Vengatesan, S.; Jayakumar, A.; Sadasivuni, K.K. FCEV vs. BEV—A short overview on identifying the key contributors to affordable & clean energy (SDG-7). Energy Strategy Rev. 2024, 53, 101380. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef]
- Lewis, G.N.; Keyes, F.G. The potential of the lithium electrode. J. Am. Chem. Soc. 1913, 35, 340–344. [Google Scholar] [CrossRef]
- Selim, R.G.; Hill, K.; Rao, M. Research and Development of a High Capacity, Nonaqueous Secondary Battery; PR Mallory & Company: Springfield, VA, USA, 1966. [Google Scholar]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode materials for lithium-ion batteries: A review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Lee, M.J.; Han, J.; Lee, K.; Lee, Y.J.; Kim, B.G.; Jung, K.-N.; Kim, B.J.; Lee, S.W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Gonçalves, R.; Costa, C.M.; Lanceros-Méndez, S. Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries. ACS Omega 2022, 7, 14457–14464. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Z.; Wu, S.; Han, Y.; Li, J. A Machine Learning Shortcut for Screening the Spinel Structures of Mg/Zn Ion Battery Cathodes with a High Conductivity and Rapid Ion Kinetics. Energy Storage Mater. 2021, 42, 277–285. [Google Scholar] [CrossRef]
- Chi, P.-W.; Paul, T.; Su, Y.-H.; Su, K.-H.; Su, C.-Y.; Wu, P.M.; Wang, S.-F.; Wu, M.-K. A study on Ti-doped Fe3O4 anode for Li ion battery using machine learning, electrochemical and distribution function of relaxation times (DFRTs) analyses. Sci. Rep. 2022, 12, 4851. [Google Scholar] [CrossRef]
- Louis, S.-Y.; Siriwardane, E.M.D.; Joshi, R.P.; Omee, S.S.; Kumar, N.; Hu, J. Accurate Prediction of Voltage of Battery Electrode Materials Using Attention-Based Graph Neural Networks. ACS Appl. Mater. Interfaces 2022, 14, 26587–26594. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Finegan, D.P.; Zhao, H.; Lu, X.; Li, W.; Hoffman, N.; Bertei, A.; Shearing, P.; Bazant, M.Z. Guiding the Design of Heterogeneous Electrode Microstructures for Li-Ion Batteries: Microscopic Imaging, Predictive Modeling, and Machine Learnings. Adv. Energy Mater. 2021, 11, 2003908. [Google Scholar] [CrossRef]
- Ha, M.; Hajibabaei, A.; Kim, D.Y.; Singh, A.N.; Yun, J.; Myung, C.W.; Kim, K.S. Al-Doping Driven Suppression of Capacity and Voltage Fadings in 4d-Element Containing Li-Ion-Battery Cathode Materials: Machine Learning and Density Functional Theory. Adv. Energy Mater. 2022, 12, 2201497. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Sun, Q. Topological Quantum Cathode Materials for Fast Charging Li-Ion Battery Identified. Adv. Theory Simul. 2022, 5, 2100350. [Google Scholar] [CrossRef]
- Allam, O.; Cho, B.W.; Kim, K.C.; Jang, S.S. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. RSC Adv. 2018, 8, 39414–39420. [Google Scholar] [CrossRef]
- Attarian Shandiz, M.; Gauvin, R. Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries. Comput. Mater. Sci. 2016, 117, 270–278. [Google Scholar] [CrossRef]
- Houchins, G.; Viswanathan, V. An accurate machine-learning calculator for optimization of Li-ion battery cathodes. J. Chem. Phys. 2020, 153, 054124. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.P.; Marchiori, C.F.N.; Brandell, D.; Araujo, C.M. Artificial intelligence driven in-silico discovery of novel organic lithium-ion battery cathodes. Energy Storage Mater. 2022, 44, 313–325. [Google Scholar] [CrossRef]
- Bölle, F.T.; Bhowmik, A.; Vegge, T.; Maria García Lastra, J.; Castelli, I.E. Automatic Migration Path Exploration for Multivalent Battery Cathodes using Geometrical Descriptors. Batter Supercaps 2021, 4, 1516–1524. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Das, S.; Pathak, B. Capacity prediction of K-ion batteries: A machine learning based approach for high throughput screening of electrode materials. Mater. Adv. 2022, 3, 7833–7845. [Google Scholar] [CrossRef]
- Xue, Z.; Li, J.; Pianetta, P.; Liu, Y. Data-Driven Lithium-Ion Battery Cathode Research with State-of-the-Art Synchrotron X-ray Techniques. Acc. Mater. Res. 2022, 3, 854–865. [Google Scholar] [CrossRef]
- Gao, X.; Liu, X.; He, R.; Wang, M.; Xie, W.; Brandon, N.P.; Wu, B.; Ling, H.; Yang, S. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach. Energy Storage Mater. 2021, 36, 435–458. [Google Scholar] [CrossRef]
- Honrao, S.J.; Yang, X.; Radhakrishnan, B.; Kuwata, S.; Komatsu, H.; Ohma, A.; Sierhuis, M.; Lawson, J.W. Discovery of novel Li SSE and anode coatings using interpretable machine learning and high-throughput multi-property screening. Sci. Rep. 2021, 11, 16484. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Obukata, T.; Shimada, T.; Takenaka, N.; Nakayama, M.; Yamada, A.; Yamada, Y. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 2022, 7, 1217–1224. [Google Scholar] [CrossRef]
- Huang, J.-X.; Csányi, G.; Zhao, J.-B.; Cheng, J.; Deringer, V.L. First-principles study of alkali-metal intercalation in disordered carbon anode materials. J. Mater. Chem. A 2019, 7, 19070–19080. [Google Scholar] [CrossRef]
- Kabiraj, A.; Mahapatra, S. High-throughput assessment of two-dimensional electrode materials for energy storage devices. Cell Rep. Phys. Sci. 2022, 3, 100718. [Google Scholar] [CrossRef]
- Guo, X.; Chen, C.; Ong, S.P. Intercalation Chemistry of the Disordered Rocksalt Li3V2O5 Anode from Cluster Expansions and Machine Learning Interatomic Potentials. Chem. Mater. 2023, 35, 1537–1546. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Lu, J.; Shen, L. Interpretable learning of voltage for electrode design of multivalent metal-ion batteries. NPJ Comput. Mater. 2022, 8, 175. [Google Scholar] [CrossRef]
- Eremin, R.A.; Zolotarev, P.N.; Ivanshina, O.Y.; Bobrikov, I.A. Li(Ni,Co,Al)O2 Cathode Delithiation: A Combination of Topological Analysis, Density Functional Theory, Neutron Diffraction, and Machine Learning Techniques. J. Phys. Chem. C 2017, 121, 28293–28305. [Google Scholar] [CrossRef]
- Wang, C.; Aoyagi, K.; Wisesa, P.; Mueller, T. Lithium Ion Conduction in Cathode Coating Materials from On-the-Fly Machine Learning. Chem. Mater. 2020, 32, 3741–3752. [Google Scholar] [CrossRef]
- Niri, M.F.; Liu, K.; Apachitei, G.; Ramirez, L.R.; Lain, M.; Widanage, D.; Marco, J. Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics. J. Clean. Prod. 2021, 324, 129272. [Google Scholar] [CrossRef]
- Moses, I.A.; Joshi, R.P.; Ozdemir, B.; Kumar, N.; Eickholt, J.; Barone, V. Machine Learning Screening of Metal-Ion Battery Electrode Materials. ACS Appl. Mater. Interfaces 2021, 13, 53355–53362. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.P.; Eickholt, J.; Li, L.; Fornari, M.; Barone, V.; Peralta, J.E. Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 18494–18503. [Google Scholar] [CrossRef]
- Tsuchimoto, A.; Okubo, M.; Yamada, A. Machine Learning-based Comprehensive Survey on Lithium-rich Cathode Materials. Electrochemistry 2023, 91, 037007. [Google Scholar] [CrossRef]
- Wang, G.; Fearn, T.; Wang, T.; Choy, K.-L. Machine-Learning Approach for Predicting the Discharging Capacities of Doped Lithium Nickel–Cobalt–Manganese Cathode Materials in Li-Ion Batteries. ACS Cent. Sci. 2021, 7, 1551–1560. [Google Scholar] [CrossRef]
- Finegan, D.P.; Squires, I.; Dahari, A.; Kench, S.; Jungjohann, K.L.; Cooper, S.J. Machine-Learning-Driven Advanced Characterization of Battery Electrodes. ACS Energy Lett. 2022, 7, 4368–4378. [Google Scholar] [CrossRef]
- Kim, M.; Kang, S.; Gyu Park, H.; Park, K.; Min, K. Maximizing the energy density and stability of Ni-rich layered cathode materials with multivalent dopants via machine learning. Chem. Eng. J. 2023, 452, 139254. [Google Scholar] [CrossRef]
- Kabra, V.; Birn, B.; Kamboj, I.; Augustyn, V.; Mukherjee, P.P. Mesoscale Machine Learning Analytics for Electrode Property Estimation. J. Phys. Chem. C 2022, 126, 14413–14429. [Google Scholar] [CrossRef]
- Allam, O.; Kuramshin, R.; Stoichev, Z.; Cho, B.W.; Lee, S.W.; Jang, S.S. Molecular structure–redox potential relationship for organic electrode materials: Density functional theory–Machine learning approach. Mater. Today Energy 2020, 17, 100482. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Ringbeck, F.; Jöst, D.; Zhang, L.; Wei, Z.; Sauer, D.U. Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries. J. Power Sources 2021, 506, 230034. [Google Scholar] [CrossRef]
- Bailey, J.J.; Wade, A.; Boyce, A.M.; Zhang, Y.S.; Brett, D.J.L.; Shearing, P.R. Quantitative assessment of machine-learning segmentation of battery electrode materials for active material quantification. J. Power Sources 2023, 557, 232503. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Lee, S.; Kang, H.; Sambandam, B.; Mathew, V.; Hwang, J.-Y.; Kim, J. Recent Achievements in Experimental and Computational Studies of Positive Electrode Materials for Nonaqueous Ca- and Al-Ion Batteries. J. Phys. Chem. C 2022, 126, 9209–9227. [Google Scholar] [CrossRef]
- Faraji Niri, M.; Reynolds, C.; Román Ramírez, L.A.; Kendrick, E.; Marco, J. Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning. Energy Storage Mater. 2022, 51, 223–238. [Google Scholar] [CrossRef]
- Anniés, S.; Scheurer, C.; Panosetti, C. The intrinsic electrostatic dielectric behaviour of graphite anodes in Li-ion batteries—Across the entire functional range of charge. Electrochim. Acta 2023, 444, 141966. [Google Scholar] [CrossRef]
- Jiao, J.; Lai, G.; Qin, S.; Fang, C.; Xu, X.; Jiang, Y.; Ouyang, C.; Zheng, J. Tuning of surface morphology in Li layered oxide cathode materials. Acta Mater. 2022, 238, 118229. [Google Scholar] [CrossRef]
- Ellis, L.D.; Buteau, S.; Hames, S.G.; Thompson, L.M.; Hall, D.S.; Dahn, J.R. A New Method for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells, Using Fourier Transform Infrared Spectroscopy and Machine Learning. J. Electrochem. Soc. 2018, 165, A256–A262. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef] [PubMed]
- Benayad, A.; Diddens, D.; Heuer, A.; Krishnamoorthy, A.N.; Maiti, M.; Le Cras, F.; Legallais, M.; Rahmanian, F.; Shin, Y.; Stein, H.; et al. High-Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research. Adv. Energy Mater. 2022, 12, 210267. [Google Scholar] [CrossRef]
- Yang, G.; Lehmann, M.L.; Zhao, S.; Li, B.; Ge, S.; Cao, P.-F.; Delnick, F.M.; Sokolov, A.P.; Saito, T.; Nanda, J. Anomalously high elastic modulus of a poly(ethylene oxide)-based composite electrolyte. Energy Storage Mater. 2021, 35, 431–442. [Google Scholar] [CrossRef]
- Dave, A.; Mitchell, J.; Burke, S.; Lin, H.; Whitacre, J.; Viswanathan, V. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 2022, 13, 5454. [Google Scholar] [CrossRef]
- Sendek, A.D.; Antoniuk, E.R.; Cubuk, E.D.; Ransom, B.; Francisco, B.E.; Buettner-Garrett, J.; Cui, Y.; Reed, E.J. Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium–Boron–Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes. ACS Appl. Mater. Interfaces 2020, 12, 37957–37966. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Dive, A.; Grieder, A.; Adelstein, N.; Kang, S.; Wan, L.F.; Wood, B.C. Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes. J. Chem. Phys. 2022, 156, 221101. [Google Scholar] [CrossRef] [PubMed]
- Dajnowicz, S.; Agarwal, G.; Stevenson, J.M.; Jacobson, L.D.; Ramezanghorbani, F.; Leswing, K.; Friesner, R.A.; Halls, M.D.; Abel, R. High-Dimensional Neural Network Potential for Liquid Electrolyte Simulations. J. Phys. Chem. B 2022, 126, 6271–6280. [Google Scholar] [CrossRef]
- Adenusi, H.; Chass, G.A.; Passerini, S.; Tian, K.V.; Chen, G. Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook. Adv. Energy Mater. 2023, 13, 2203307. [Google Scholar] [CrossRef]
- Shodiev, A.; Duquesnoy, M.; Arcelus, O.; Chouchane, M.; Li, J.; Franco, A.A. Machine learning 3D-resolved prediction of electrolyte infiltration in battery porous electrodes. J. Power Sources 2021, 511, 230384. [Google Scholar] [CrossRef]
- Zhao, Y.; Schiffmann, N.; Koeppe, A.; Brandt, N.; Bucharsky, E.C.; Schell, K.G.; Selzer, M.; Nestler, B. Machine Learning Assisted Design of Experiments for Solid State Electrolyte Lithium Aluminum Titanium Phosphate. Front. Mater. 2022, 9, 821817. [Google Scholar] [CrossRef]
- Ahmad, Z.; Xie, T.; Maheshwari, C.; Grossman, J.C.; Viswanathan, V. Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. ACS Cent. Sci. 2018, 4, 996–1006. [Google Scholar] [CrossRef]
- Satpati, A.; Kandregula, G.R.; Ramanujam, K. Machine learning enabled high-throughput screening of inorganic solid electrolytes for regulating dendritic growth in lithium metal anodes. New J. Chem. 2022, 46, 14227–14238. [Google Scholar] [CrossRef]
- Kim, K.; Siegel, D.J. Machine learning reveals factors that control ion mobility in anti-perovskite solid electrolytes. J. Mater. Chem. A 2022, 10, 15169–15182. [Google Scholar] [CrossRef]
- Duong, V.M.; Tran, T.N.; Garg, A.; Phung, T.G.; Tran, V.M.; Le, M.L.P.; Panwar, N.G. Machine learning technique-based data-driven model of exploring effects of electrolyte additives on LiNi0.6Mn0.2Co0.2O2/graphite cell. J. Energy Storage 2021, 42, 103012. [Google Scholar] [CrossRef]
- Nakano, K.; Tanibata, N.; Takeda, H.; Kobayashi, R.; Nakayama, M.; Watanabe, N. Molecular Dynamics Simulation of Li-Ion Conduction at Grain Boundaries in NASICON-Type LiZr2(PO4)3 Solid Electrolytes. J. Phys. Chem. C 2021, 125, 23604–23612. [Google Scholar] [CrossRef]
- Sendek, A.D.; Cheon, G.; Pasta, M.; Reed, E.J. Quantifying the Search for Solid Li-Ion Electrolyte Materials by Anion: A Data-Driven Perspective. J. Phys. Chem. C 2020, 124, 8067–8079. [Google Scholar] [CrossRef]
- Spotte-Smith, E.W.C.; Blau, S.M.; Xie, X.; Patel, H.D.; Wen, M.; Wood, B.; Dwaraknath, S.; Persson, K.A. Quantum chemical calculations of lithium-ion battery electrolyte and interphase species. Sci. Data 2021, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Y.; Feng, D.; Lv, C.; Li, H.; Zhou, S.; Jiang, Q.; Yang, J.; Gao, Z.; He, Y.; et al. Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. J. Power Sources 2023, 561, 232720. [Google Scholar] [CrossRef]
- Choi, E.; Jo, J.; Kim, W.; Min, K. Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries via Data-Driven Approaches. ACS Appl. Mater. Interfaces 2021, 13, 42590–42597. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Jaafreh, R.; Dutta, S.; Singh, S.N.; Hamad, K.; Ho Yoon, D. Introducing MagBERT: A language model for magnesium textual data mining and analysis. J. Magnes. Alloys. 2024, 12, 3216–3228. [Google Scholar] [CrossRef]
- Fu, Z.-H.; Chen, X.; Yao, N.; Shen, X.; Ma, X.-X.; Feng, S.; Wang, S.; Zhang, R.; Zhang, L.; Zhang, Q. The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12. J. Energy Chem. 2022, 70, 59–66. [Google Scholar] [CrossRef]
- Wang, J.; Panchal, A.A.; Sai Gautam, G.; Canepa, P. The resistive nature of decomposing interfaces of solid electrolytes with alkali metal electrodes. J. Mater. Chem. A 2022, 10, 19732–19742. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Yong, A.X.B.; Gustafson, W.J.; Reedy, C.N.; Ertekin, E.; Krogstad, J.A.; Perry, N.H. Toward design of cation transport in solid-state battery electrolytes: Structure-dynamics relationships. Curr. Opin. Solid. State Mater. Sci. 2020, 24, 100875. [Google Scholar] [CrossRef]
- Hajibabaei, A.; Kim, K.S. Universal Machine Learning Interatomic Potentials: Surveying Solid Electrolytes. J. Phys. Chem. Lett. 2021, 12, 8115–8120. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cheng, J. Unraveling the origin of reductive stability of super-concentrated electrolytes from first principles and unsupervised machine learning. Chem. Sci. 2022, 13, 11570–11576. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, Y.; Wang, C.; Tian, J.; Chen, X.; Li, H.; Zhang, Q. A data-driven method for extracting aging features to accurately predict the battery health. Energy Storage Mater. 2023, 57, 460–470. [Google Scholar] [CrossRef]
- Pan, W.; Luo, X.; Zhu, M.; Ye, J.; Gong, L.; Qu, H. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves. J. Energy Storage 2021, 42, 103072. [Google Scholar] [CrossRef]
- Gupta, Y. A Multi-Class Classification Based Approach for Remaining Useful Life (RUL) Prediction of Li-Ion Battery. Biosci. Biotechnol. Res. Commun. 2020, 13, 511–516. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Zhang, L.; Su, X.; Zhang, W.; Li, X.; Du, J. A novel aging characteristics-based feature engineering for battery state of health estimation. Energy 2023, 273, 127169. [Google Scholar] [CrossRef]
- Lu, Y.; Maftouni, M.; Yang, T.; Zheng, P.; Young, D.; Kong, Z.J.; Li, Z. A novel disassembly process of end-of-life lithium-ion batteries enhanced by online sensing and machine learning techniques. J. Intell. Manuf. 2023, 34, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Yang, W.; Wang, C.; Fan, H.; Wang, L.; Li, J.; Zhong, S.; Zheng, W.; Zou, H.; Chen, S.; et al. A novel hybrid model for lithium-ion batteries lifespan prediction with high accuracy and interpretability. J. Energy Storage 2023, 61, 106728. [Google Scholar] [CrossRef]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Shu, X.; Li, G.; Shen, J.; Lei, Z.; Chen, Z.; Liu, Y. A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization. Energy 2020, 204, 117957. [Google Scholar] [CrossRef]
- Faraji-Niri, M.; Rashid, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques. J. Energy Storage 2023, 58, 106295. [Google Scholar] [CrossRef]
- Qu, W.; Li, J.; Zhang, R.; Liu, S.; Bao, J. Adaptive planning of human–robot collaborative disassembly for end-of-life lithium-ion batteries based on digital twin. J. Intell. Manuf. 2023, 35, 2021–2043. [Google Scholar] [CrossRef]
- Gao, Y.; Li, C.; Huang, L. An improved deep extreme learning machine to predict the remaining useful life of lithium-ion battery. Front. Energy Res. 2022, 10, 1032660. [Google Scholar] [CrossRef]
- Luo, W.; Syed, A.U.; Nicholls, J.R.; Gray, S. An SVM-Based Health Classifier for Offline Li-Ion Batteries by Using EIS Technology. J. Electrochem. Soc. 2023, 170, 030532. [Google Scholar] [CrossRef]
- Mayilvahanan, K.S.; Takeuchi, K.J.; Takeuchi, E.S.; Marschilok, A.C.; West, A.C. Supervised Learning of Synthetic Big Data for Li-Ion Battery Degradation Diagnosis. Batter Supercaps 2022, 5, e202100166. [Google Scholar] [CrossRef]
- Hosen, M.S.; Jaguemont, J.; Van Mierlo, J.; Berecibar, M. Battery lifetime prediction and performance assessment of different modeling approaches. iScience 2021, 24, 102060. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, L.; Yu, H.; Wang, J.; Li, J.; Yang, K.; Zhao, Y.; Wang, H.; Wu, B.; Brandon, N.P.; et al. Bridging Multiscale Characterization Technologies and Digital Modeling to Evaluate Lithium Battery Full Lifecycle. Adv. Energy Mater. 2022, 12, 2200889. [Google Scholar] [CrossRef]
- Gasper, P.; Gering, K.; Dufek, E.; Smith, K. Challenging Practices of Algebraic Battery Life Models through Statistical Validation and Model Identification via Machine-Learning. J. Electrochem. Soc. 2021, 168, 020502. [Google Scholar] [CrossRef]
- Su, L.; Wu, M.; Li, Z.; Zhang, J. Cycle life prediction of lithium-ion batteries based on data-driven methods. eTransportation 2021, 10, 100137. [Google Scholar] [CrossRef]
- Li, R.; Hong, J.; Zhang, H.; Chen, X. Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles. Energy 2022, 257, 124771. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Li, X.; Ju, L.; Geng, G.; Jiang, Q. Data-driven state-of-health estimation for lithium-ion battery based on aging features. Energy 2023, 274, 127378. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, F.; Tsui, K.-L.; Li, L.; Zhang, Z. Early prediction of battery lifetime via a machine learning based framework. Energy 2021, 225, 120205. [Google Scholar] [CrossRef]
- Fei, Z.; Zhang, Z.; Yang, F.; Tsui, K.-L.; Li, L. Early-stage lifetime prediction for lithium-ion batteries: A deep learning framework jointly considering machine-learned and handcrafted data features. J. Energy Storage 2022, 52, 104936. [Google Scholar] [CrossRef]
- Ran, A.; Liang, Z.; Chen, S.; Cheng, M.; Sun, C.; Ma, F.; Wang, K.; Li, B.; Zhou, G.; Zhang, X.; et al. Fast Clustering of Retired Lithium-Ion Batteries for Secondary Life with a Two-Step Learning Method. ACS Energy Lett. 2022, 7, 3817–3825. [Google Scholar] [CrossRef]
- Li, A.G.; Wang, W.; West, A.C.; Preindl, M. Health and performance diagnostics in Li-ion batteries with pulse-injection-aided machine learning. Appl. Energy 2022, 315, 119005. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Maleki, S.; Ray, B.; Hagh, M.T. Hybrid framework for predicting and forecasting State of Health of Lithium-ion batteries in Electric Vehicles. Sustain. Energy Grids Netw. 2022, 30, 100603. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Yu, C.; Xie, Y.; Fernandez, C. Improved Particle Swarm Optimization-Extreme Learning Machine Modeling Strategies for the Accurate Lithium-ion Battery State of Health Estimation and High-adaptability Remaining Useful Life Prediction. J. Electrochem. Soc. 2022, 169, 080520. [Google Scholar] [CrossRef]
- Thelen, A.; Lui, Y.H.; Shen, S.; Laflamme, S.; Hu, S.; Ye, H.; Hu, C. Integrating physics-based modeling and machine learning for degradation diagnostics of lithium-ion batteries. Energy Storage Mater. 2022, 50, 668–695. [Google Scholar] [CrossRef]
- Smith, K.; Gasper, P.; Colclasure, A.M.; Shimonishi, Y.; Yoshida, S. Lithium-Ion Battery Life Model with Electrode Cracking and Early-Life Break-in Processes. J. Electrochem. Soc. 2021, 168, 100530. [Google Scholar] [CrossRef]
- Rauf, H.; Khalid, M.; Arshad, N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling. Renew. Sustain. Energy Rev. 2022, 156, 111903. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, N.; Ji, Y.; Niu, M.; Wang, Y. Lithium-ion batteries remaining useful life prediction based on BLS-RVM. Energy 2021, 234, 121269. [Google Scholar] [CrossRef]
- Rouhi Ardeshiri, R.; Ma, C. Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach. Int. J. Energy Res. 2021, 45, 16633–16648. [Google Scholar] [CrossRef]
- Pan, H.; Lü, Z.; Wang, H.; Wei, H.; Chen, L. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy 2018, 160, 466–477. [Google Scholar] [CrossRef]
- Shu, X.; Li, G.; Zhang, Y.; Shen, J.; Chen, Z.; Liu, Y. Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles. J. Power Sources 2020, 471, 228478. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Liu, X.; Rao, J.; Fan, Y.; Tan, X. Online state of health estimation for lithium-ion batteries based on a dual self-attention multivariate time series prediction network. Energy Rep. 2022, 8, 8953–8964. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Shi, N.; Li, F.; Wang, Y.; Cui, J. Online state-of-health estimation of lithium-ion battery based on relevance vector machine with dynamic integration. Appl. Soft Comput. 2022, 129, 109615. [Google Scholar] [CrossRef]
- Greenbank, S.; Howey, D.A. Piecewise-linear modelling with automated feature selection for Li-ion battery end-of-life prognosis. Mech. Syst. Signal Process. 2023, 184, 109612. [Google Scholar] [CrossRef]
- Xu, S.; Zha, F.-L.; Huang, B.-W.; Yu, B.; Huang, H.-B.; Zhou, T.; Mao, W.-Q.; Wu, J.-J.; Wei, J.-Q.; Gong, S.-K.; et al. Research on the state of health estimation of lithium-ion batteries for energy storage based on XGB-AKF method. Front. Energy Res. 2023, 10, 999676. [Google Scholar] [CrossRef]
- Shah, A.; Shah, K.; Shah, C.; Shah, M. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review. Renew. Energy Focus 2022, 42, 146–164. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Zhang, H. State of Health and Charge Estimation Based on Adaptive Boosting integrated with particle swarm optimization/support vector machine (AdaBoost-PSO-SVM) Model for Lithium-ion Batteries. Int. J. Electrochem. Sci. 2022, 17, 220212. [Google Scholar] [CrossRef]
- Shu, X.; Shen, S.; Shen, J.; Zhang, Y.; Li, G.; Chen, Z.; Liu, Y. State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives. iScience 2021, 24, 103265. [Google Scholar] [CrossRef]
- Lee, G.; Kim, J.; Lee, C. State-of-health estimation of Li-ion batteries in the early phases of qualification tests: An interpretable machine learning approach. Expert Syst. Appl. 2022, 197, 116817. [Google Scholar] [CrossRef]
- Mawonou, K.S.R.; Eddahech, A.; Dumur, D.; Beauvois, D.; Godoy, E. State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking. J. Power Sources 2021, 484, 229154. [Google Scholar] [CrossRef]
- Li, G.; Li, B.; Li, C.; Wang, S. State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles. Energy 2023, 263, 126064. [Google Scholar] [CrossRef]
- Attia, P.M.; Severson, K.A.; Witmer, J.D. Statistical Learning for Accurate and Interpretable Battery Lifetime Prediction. J. Electrochem. Soc. 2021, 168, 090547. [Google Scholar] [CrossRef]
- Lyu, Z.; Wang, G.; Gao, R. Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework. Energy 2022, 251, 123852. [Google Scholar] [CrossRef]
- Li, A.G.; West, A.C.; Preindl, M. Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review. Appl. Energy 2022, 316, 119030. [Google Scholar] [CrossRef]
- Zhang, Z.; Mansouri Tehrani, A.; Oliynyk, A.O.; Day, B.; Brgoch, J. Finding the Next Superhard Material through Ensemble Learning. Adv. Mater. 2021, 33, 2005112. [Google Scholar] [CrossRef]
- Jaafreh, R.; Sharan, A.; Sajjad, M.; Singh, N.; Hamad, K. A Machine Learning-Assisted Approach to a Rapid and Reliable Screening for Mechanically Stable Perovskite-Based Materials. Adv. Funct. Mater. 2023, 33, 2210374. [Google Scholar] [CrossRef]
- Jaafreh, R.; Kang, Y.S.; Hamad, K. Brittle and ductile characteristics of intermetallic compounds in magnesium alloys: A large-scale screening guided by machine learning. J. Magnes. Alloys 2023, 11, 392–404. [Google Scholar] [CrossRef]
- Xue, D.; Xue, D.; Yuan, R.; Zhou, Y.; Balachandran, P.V.; Ding, X.; Sun, J.; Lookman, T. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 2017, 125, 532–541. [Google Scholar] [CrossRef]
- Jaafreh, R.; Chaudry, U.M.; Hamad, K.; Abuhmed, T. Age-hardening behavior guided by the multi-objective evolutionary algorithm and machine learning. J. Alloys Compd. 2022, 893, 162104. [Google Scholar] [CrossRef]
- Van Setten, M.J.; Dekkers, H.F.W.; Pashartis, C.; Chasin, A.; Belmonte, A.; Delhougne, R.; Kar, G.S.; Pourtois, G. Complex amorphous oxides: Property prediction from high throughput DFT and AI for new material search. Mater. Adv. 2022, 3, 8413–8427. [Google Scholar] [CrossRef]
- Lu, W.-C.; Ji, X.-B.; Li, M.-J.; Liu, L.; Yue, B.-H.; Zhang, L.-M. Using support vector machine for materials design. Adv. Manuf. 2013, 1, 151–159. [Google Scholar] [CrossRef]
- Kurban, H.; Kurban, M. Building Machine Learning systems for multi-atoms structures: CH3NH3PbI3 perovskite nanoparticles. Comput. Mater. Sci. 2021, 195, 110490. [Google Scholar] [CrossRef]
- Jaafreh, R.; Kang, Y.S.; Hamad, K. Lattice Thermal Conductivity: An Accelerated Discovery Guided by Machine Learning. ACS Appl. Mater. Interfaces 2021, 13, 57204–57213. [Google Scholar] [CrossRef]
- Jaafreh, R.; Kang, Y.S.; Kim, J.G.; Hamad, K. Machine learning guided discovery of super-hard high entropy ceramics. Mater Lett. 2022, 306, 130899. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Pereznieto, S.; Jaafreh, R.; Kim, J.; Hamad, K. Solid electrolytes for Li-ion batteries via machine learning. Mater. Lett. 2023, 337, 133926. [Google Scholar] [CrossRef]
- Kumar, S.; Jaafreh, R.; Dutta, S.; Pereznieto, S.; Hamad, K.; Ho Yoon, D. Learning techniques for designing solid-state lithium-ion batteries with high thermomechanical stability. Mater. Lett. 2023, 351, 135049. [Google Scholar] [CrossRef]
- Kim, E.; Huang, K.; Saunders, A.; McCallum, A.; Ceder, G.; Olivetti, E. Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning. Chem. Mater. 2017, 29, 9436–9444. [Google Scholar] [CrossRef]
- Mahbub, R.; Huang, K.; Jensen, Z.; Hood, Z.D.; Rupp, J.L.M.; Olivetti, E.A. Text mining for processing conditions of solid-state battery electrolytes. Electrochem. Commun. 2020, 121, 106860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzamer, H.; Jaafreh, R.; Kim, J.-G.; Hamad, K. Artificial Intelligence and Li Ion Batteries: Basics and Breakthroughs in Electrolyte Materials Discovery. Crystals 2025, 15, 114. https://doi.org/10.3390/cryst15020114
Alzamer H, Jaafreh R, Kim J-G, Hamad K. Artificial Intelligence and Li Ion Batteries: Basics and Breakthroughs in Electrolyte Materials Discovery. Crystals. 2025; 15(2):114. https://doi.org/10.3390/cryst15020114
Chicago/Turabian StyleAlzamer, Haneen, Russlan Jaafreh, Jung-Gu Kim, and Kotiba Hamad. 2025. "Artificial Intelligence and Li Ion Batteries: Basics and Breakthroughs in Electrolyte Materials Discovery" Crystals 15, no. 2: 114. https://doi.org/10.3390/cryst15020114
APA StyleAlzamer, H., Jaafreh, R., Kim, J.-G., & Hamad, K. (2025). Artificial Intelligence and Li Ion Batteries: Basics and Breakthroughs in Electrolyte Materials Discovery. Crystals, 15(2), 114. https://doi.org/10.3390/cryst15020114