Advanced Strategies for Mitigating Catalyst Poisoning in Low and High Temperature Proton Exchange Membrane Fuel Cells: Recent Progress and Perspectives
Abstract
:1. Introduction
2. Overview of State-of-the-Art Poison-Tolerant Electrocatalysts
2.1. Surface Engineering
2.2. Alloying
2.3. Combined Approach
3. Converging Anti-Poisoning Strategies
4. Conclusions and Perspectives
- Surface engineering: This approach involves direct surface modifications and the implementation of protective barriers to manipulate catalyst geometric properties and enhance poisoning resistance.
- Alloying: A strategic method that modifies the electronic structure of catalytic materials to improve their tolerance to poisoning agents.
- Combined approaches: Generation of synergistic effects by combining multiple mitigation strategies to optimize catalyst performance.
- Rigorous and standardized characterization protocols of catalyst performance under industrially relevant environments;
- Development of advanced in situ monitoring techniques;
- Comprehensive understanding of long-term catalyst stability and degradation mechanisms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molochas, C.; Tsiakaras, P. Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges. Catalysts 2021, 11, 1127. [Google Scholar] [CrossRef]
- Park, J.-H.; Saito, N.; Kawasumi, M. Improving the Durability and Anti-Poisoning Properties of Platinum Catalysts by Carbon Shell Encapsulation: A Promising Approach for Both Cathode and Anode Catalysts for Polymer Electrolyte Membrane Fuel Cells. Int. J. Hydrog. Energy 2024, 72, 642–651. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, G.; Dong, W.; Zhang, Y.; Zhao, Z.; Qiu, L.; Dong, J. Progress and Perspective for in Situ Studies of Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Adv. Sci. 2023, 10, 2300550. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper Perovskites in Electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Wang, M.; Pei, P.; Xu, Y.; Fan, T.; Ren, P.; Zhu, Z.; Chen, D.; Fu, X.; Song, X.; Wang, H. CO-Tolerance Behaviors of Proton Exchange Membrane Fuel Cell Stacks with Impure Hydrogen Fuel. Appl. Energy 2024, 366, 123326. [Google Scholar] [CrossRef]
- Wei, X.; Wang, R.-Z.; Zhao, W.; Chen, G.; Chai, M.-R.; Zhang, L.; Zhang, J. Recent Research Progress in PEM Fuel Cell Electrocatalyst Degradation and Mitigation Strategies. EnergyChem 2021, 3, 100061. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, S.; Tu, Z.; Chan, S.H. Recent Development in Degradation Mechanisms of Proton Exchange Membrane Fuel Cells for Vehicle Applications: Problems, Progress, and Perspectives. Energy Storage Sav. 2024, 3, 106–152. [Google Scholar] [CrossRef]
- Patil, V.; Reshmi, P.; Prajna, S.; Haleshappa, D.; Jayarama, A.; Pinto, R. Degradation Mechanisms in PEM Fuel Cells: A Brief Review. Mater. Today Proc. 2023, in press. [CrossRef]
- Okonkwo, P.C.; Ige, O.O.; Uzoma, P.C.; Emori, W.; Benamor, A.; Abdullah, A.M. Platinum Degradation Mechanisms in Proton Exchange Membrane Fuel Cell (PEMFC) System: A Review. Int. J. Hydrog. Energy 2021, 46, 15850–15865. [Google Scholar] [CrossRef]
- Haıdar, F.; Arora, D.; Soloy, A.; Bartoli, T. Study of Proton-Exchange Membrane Fuel Cell Degradation and Its Counter Strategies: Flooding/Drying, Cold Start and Carbon Monoxide Poisoning. Int. J. Automot. Sci. Technol. 2024, 8, 96–109. [Google Scholar] [CrossRef]
- Labata, M.F.; Li, G.; Ocon, J.; Chuang, P.-Y.A. Insights on Platinum-Carbon Catalyst Degradation Mechanism for Oxygen Reduction Reaction in Acidic and Alkaline Media. J. Power Sources 2021, 487, 229356. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. Electrochemical Water Splitting: Bridging the Gaps between Fundamental Research and Industrial Applications. Energy Environ. Mater. 2023, 6, e12441. [Google Scholar] [CrossRef]
- Ramli, Z.A.C.; Pasupuleti, J.; Zaiman, N.F.H.N.; Saharuddin, T.S.T.; Samidin, S.; Isahak, W.N.R.W.; Sofiah, A.; Kamarudin, S.K.; Tiong, S.K. Evaluating Electrocatalytic Activities of Pt, Pd, Au and Ag-Based Catalyst on PEMFC Performance: A Review. Int. J. Hydrog. Energy 2024, in press.
- Tian, H.; Cui, X.; Shi, J. Emerging Electrocatalysts for PEMFCs Applications: Tungsten Oxide as an Example. Chem. Eng. J. 2021, 421, 129430. [Google Scholar] [CrossRef]
- Luo, W.; Jiang, Y.; Wang, M.; Lu, D.; Sun, X.; Zhang, H. Design Strategies of Pt-Based Electrocatalysts and Tolerance Strategies in Fuel Cells: A Review. RSC Adv. 2023, 13, 4803–4822. [Google Scholar] [CrossRef]
- Valdés-López, V.F.; Mason, T.; Shearing, P.R.; Brett, D.J. Carbon Monoxide Poisoning and Mitigation Strategies for Polymer Electrolyte Membrane Fuel Cells–A Review. Prog. Energy Combust. Sci. 2020, 79, 100842. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Li, J.; Deng, B.; Fan, M.; Ni, M.; Mao, Z.; Yuan, H. Multi-Perspective Analysis of CO Poisoning in High-Temperature Proton Exchange Membrane Fuel Cell Stack via Numerical Investigation. Renew. Energy 2021, 180, 313–328. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, R.; Hao, L. Advances in CO-Tolerant Anode Catalysts for Proton Exchange Membrane Fuel Cells. Prog. Nat. Sci. Mater. Int. 2024, 34, 654–675. [Google Scholar] [CrossRef]
- Bhuvanendran, N.; Ravichandran, S.; Lee, S.; Sanij, F.D.; Kandasamy, S.; Pandey, P.; Su, H.; Lee, S.Y. Recent Progress in Pt-Based Electrocatalysts: A Comprehensive Review of Supported and Support-Free Systems for Oxygen Reduction. Coord. Chem. Rev. 2024, 521, 216191. [Google Scholar] [CrossRef]
- Guo, Z.; Perez-Page, M.; Chen, J.; Ji, Z.; Holmes, S.M. Recent Advances in Phosphoric Acid–Based Membranes for High–Temperature Proton Exchange Membrane Fuel Cells. J. Energy Chem. 2021, 63, 393–429. [Google Scholar] [CrossRef]
- Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B.Y. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Acc. Chem. Res. 2021, 54, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, C.; Kucernak, A.; Liu, H.; Wu, J.; Li, S. Synergizing Single-Atom and Carbon-Encapsulated Nanoparticles of Fe for Efficient Oxygen Reduction and Durable Zn–Air Batteries. ACS Appl. Energy Mater. 2024, 7, 5398–5407. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Xie, C.; Wang, Y.; Li, H.; Ding, X. Hetero-Structured Composite Cathodes by Electrospinning with High CO2-Poisoning Tolerance for Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2024, 50, 1137–1146. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, X.; Zhang, M.; Du, W.; Xia, H. The Enhancement in the Performance of Ultra-Small Core–Shell Au@ AuPt Nanoparticles toward HER and ORR by Surface Engineering. Nanoscale 2023, 15, 4378–4387. [Google Scholar] [CrossRef]
- Long, D.; Ping, X.; Ni, J.; Chen, F.; Chen, S.; Wei, Z.; Guo, L.; Zheng, J. Strengthening Pt/WO x Interfacial Interactions to Increase the CO Tolerance of Pt for Hydrogen Oxidation Reaction. Chem. Commun. 2023, 59, 13583–13586. [Google Scholar] [CrossRef]
- Garg, A.; Milina, M.; Ball, M.; Zanchet, D.; Hunt, S.T.; Dumesic, J.A.; Román-Leshkov, Y. Transition-metal Nitride Core@ Noble-metal Shell Nanoparticles as Highly CO Tolerant Catalysts. Angew. Chem. Int. Ed. 2017, 56, 8828–8833. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, P.; Jin, Y.-Q.; Yang, H.; Sheng, T.; Yan, Y.; Wang, T.; Chen, Z.; Tian, N.; Li, X. Enhancing CO Tolerance in PEMFC Anodes via Thermal Oxidation Induced RuO2 Blocking Shell on a PtRu/C Catalyst. Nano Lett. 2024, 24, 10642–10649. [Google Scholar] [CrossRef]
- Pan, H.-R.; Tang, T.; Jiang, Z.; Ding, L.; Xu, C.; Hu, J.-S. CO-Tolerant Hydrogen Oxidation Electrocatalysts for Low-Temperature Hydrogen Fuel Cells. J. Phys. Chem. Lett. 2024, 15, 3011–3022. [Google Scholar] [CrossRef]
- Wang, R.; Du, Y.; Yan, Y.; Yan, S.; Zou, Z. Dopamine-Carbonized Coating PtCo Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2024, 15, 8459–8466. [Google Scholar] [CrossRef]
- Park, H.; Kim, D.-K.; Kim, H.; Oh, S.; Jung, W.S.; Kim, S.-K. Binder-Coated Electrodeposited PtNiCu Catalysts for the Oxygen Reduction Reaction in High-Temperature Polymer Electrolyte Membrane Fuel Cells. Appl. Surf. Sci. 2020, 510, 145444. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, D.; Banham, D.; Chen, M.; Sun, F.; Zhao, Z.; Jin, Y.; Fan, L.; Xu, S.; Gu, M. Micromodification of the Catalyst Layer by CO to Increase Pt Utilization for Proton-Exchange Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2022, 15, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Strickland, K.; Pavlicek, R.; Miner, E.; Jia, Q.; Zoller, I.; Ghoshal, S.; Liang, W.; Mukerjee, S. Anion Resistant Oxygen Reduction Electrocatalyst in Phosphoric Acid Fuel Cell. Acs Catal. 2018, 8, 3833–3843. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Chen, H.; Wei, Z. Recent Progress in Precious Metal-free Carbon-based Materials towards the Oxygen Reduction Reaction: Activity, Stability, and Anti-poisoning. Chem.—Eur. J. 2020, 26, 3973–3990. [Google Scholar] [CrossRef]
- Orellana, W.; Zuniga, C.; Gatica, A.; Ureta-Zanartu, M.-S.; Zagal, J.H.; Tasca, F. Effect of Electrolyte Media on the Catalysis of Fe Phthalocyanine toward the Oxygen Reduction Reaction: Ab Initio Molecular Dynamics Simulations and Experimental Analyses. ACS Catal. 2022, 12, 12786–12799. [Google Scholar] [CrossRef]
- Tang, M.; Yan, H.; Zhang, X.; Zheng, Z.; Chen, S. Materials Strategies Tackling Interfacial Issues in Catalyst Layers of Proton Exchange Membrane Fuel Cells. Adv. Mater. 2023, 2306387. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Z.-X.; Yu, S.; Sheng, T.; Ma, H.-B.; Chen, L.-N.; Rauf, M.; Xia, H.-P.; Zhou, Z.-Y.; Sun, S.-G. Constructing Canopy-Shaped Molecular Architectures to Create Local Pt Surface Sites with High Tolerance to H 2 S and CO for Hydrogen Electrooxidation. Energy Environ. Sci. 2018, 11, 166–171. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, W.; Ye, K.; Li, X. High CO and Sulfur Tolerant Proton Exchange Membrane Fuel Cell Anodes Enabled by “Work along Both Lines” Mechanism of 2, 6-Dihydroxymethyl Pyridine Molecule Blocking Layer. J. Colloid Interface Sci. 2024, 653, 413–422. [Google Scholar] [CrossRef]
- Cai, B.; Chen, X.; Wang, L.; Fu, H. Advanced Progress for Promoting Anodic Hydrogen Oxidation Activity and Anti-CO Poisoning in Fuel Cells. ACS Catal. 2024, 14, 13602–13629. [Google Scholar] [CrossRef]
- Tang, M.; Yang, T.; Yang, X.; Li, Y.; Shi, Z.; Wang, X.; Liu, C.; Xing, W.; Ge, J. Single-Atom Catalysts for Proton Exchange Membrane Fuel Cell: Anode Anti-Poisoning & Characterization Technology. Electrochim. Acta 2023, 446, 142120. [Google Scholar]
- Lee, D.W.; Choi, D.; Lee, M.J.; Jin, H.; Lee, S.; Jang, I.; Park, H.-Y.; Jang, J.H.; Kim, H.-J.; Lee, K.-Y. Tailoring of Pt Island RuO2/C Catalysts by Galvanic Replacement to Achieve Superior Hydrogen Oxidation Reaction and CO Poisoning Resistance. ACS Appl. Energy Mater. 2021, 4, 8098–8107. [Google Scholar] [CrossRef]
- Sun, C.; Qiu, L.; Ke, S.; Zhang, J.; Xu, G.; Dou, M. Improved Chloride Tolerance of PtCo/C with a Pt-Skin Structure toward the Oxygen Reduction Reaction Due to a Weakened Pt–Cl Interaction. ACS Appl. Energy Mater. 2022, 5, 7503–7514. [Google Scholar] [CrossRef]
- Li, X.; Xi, J.; Tang, L.; Wang, H.; Liu, Y.; Min, C.; Gao, S.; Liu, F.; Yang, X. A High-Performance and Anti-Sulfur Poisoning Oxygen Reduction Reaction Catalysts Derive from Molybdenum-Doping on PtCo Alloy Nanoparticles Surface. Electrochim. Acta 2023, 462, 142658. [Google Scholar] [CrossRef]
- Wang, M.; Cao, L.; Liu, Z.; Yang, W.; Sun, S.; Hou, M.; Shao, Z. Sulfur Dioxide-Resistant Platinum-Based Intermetallic Nanocatalysts Encaged by Porous Nitrogen-Doped Carbon for Oxygen Reduction Reaction. Chem. Eng. J. 2024, 492, 152162. [Google Scholar] [CrossRef]
- Sun, M.; Lv, Y.; Song, Y.; Wu, H.; Wang, G.; Zhang, H.; Chen, M.; Fu, Q.; Bao, X. CO-Tolerant PtRu@ h-BN/C Core–Shell Electrocatalysts for Proton Exchange Membrane Fuel Cells. Appl. Surf. Sci. 2018, 450, 244–250. [Google Scholar] [CrossRef]
- Byeon, J.; Kim, S.; Lee, S.; Jang, J.H.; Kim, S.-K.; Lee, J. Co-Tolerant Electrocatalysts for Hydrogen Fuel Cells: Fundamental Study-Based Design and Real-Life Applications. Chem. Eng. J. 2024, 493, 152626. [Google Scholar] [CrossRef]
- Li, X.; Duan, X.; Zhang, S.; Wang, C.; Hua, K.; Wang, Z.; Wu, Y.; Li, J.; Liu, J. Strategies for Achieving Ultra-Long ORR Durability—Rh Activates Interatomic Interactions in Alloys. Angew. Chem. Int. Ed. 2024, 63, e202400549. [Google Scholar] [CrossRef]
- Ehteshami, S.M.M.; Jia, Q.; Halder, A.; Chan, S.; Mukerjee, S. The Role of Electronic Properties of Pt and Pt Alloys for Enhanced Reformate Electro-Oxidation in Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta 2013, 107, 155–163. [Google Scholar] [CrossRef]
- Sun, C.; Wen, R.; Qin, Y.; Wang, L.; Wang, Y.; Dou, M.; Wang, F. Origin of Pt Site Poisoning by Impurities for Oxygen Reduction Reaction Catalysis: Tailored Intrinsic Activity of Pt Sites. ACS Appl. Energy Mater. 2023, 6, 5700–5709. [Google Scholar] [CrossRef]
- Shroti, N.; Daletou, M.K. The Pt–Co Alloying Effect on the Performance and Stability of High Temperature PEMFC Cathodes. Int. J. Hydrog. Energy 2022, 47, 16235–16248. [Google Scholar] [CrossRef]
- Prokop, M.; Domin, V.; Burianek, J.D.; Bystron, T.; Gatalo, M.; Pavko, L.; Hodnik, N.; Paidar, M.; Bouzek, K. Impact of the Catalyst Type and Dopant Composition on the Performance of High-Temperature PEM Fuel Cell; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2023; p. 1759. [Google Scholar]
- Ugartemendia, A.; Peeters, K.; Ferrari, P.; de Cózar, A.; Mercero, J.M.; Janssens, E.; Jimenez-Izal, E. Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning. ChemPhysChem 2021, 22, 1603–1610. [Google Scholar] [CrossRef]
- Cai, Z.; Lu, Z.; Bi, Y.; Li, Y.; Kuang, Y.; Sun, X. Superior Anti-CO Poisoning Capability: Au-Decorated PtFe Nanocatalysts for High-Performance Methanol Oxidation. Chem. Commun. 2016, 52, 3903–3906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Q.; Hu, Y.; Hu, H.; Yang, J.; Yang, C.; Zhu, Y.; Tu, Z.; Wang, D. N-Doped Carbon Confined Ternary Pt2NiCo Intermetallics for Efficient Oxygen Reduction Reaction. Chin. Chem. Lett. 2024, 36, 110429. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.; Kim, H. Preparation of CO-Tolerant PtRuNi/C Ternary Electrocatalyst Having a Composition Gradient Shell. Chem. Eng. J. 2021, 414, 128792. [Google Scholar] [CrossRef]
- Davletbaev, K.; Chougule, S.S.; Min, J.; Ko, K.; Kim, Y.; Choi, H.; Choi, Y.; Chavan, A.A.; Pak, B.; Rakhmonov, I.U. Effect of Heat Treatment on Structure of Carbon Shell-Encapsulated Pt Nanoparticles for Fuel Cells. Nanomaterials 2024, 14, 924. [Google Scholar] [CrossRef]
- Meyer, Q.; Yang, C.; Cheng, Y.; Zhao, C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2023, 6, 16. [Google Scholar] [CrossRef]
- Rivas, N.A.R.; Manjón, A.G.; Vega-Paredes, M.; Kim, S.-H.; Gault, B.; Jun, H.; Jung, C.; Berova, V.; Hengge, K.; Jurzinsky, T. Chemistry and Microstructure of C-Supported Ru Catalyst Nanoparticles: A Correlative Study. Ultramicroscopy 2023, 254, 113831. [Google Scholar] [CrossRef]
- Guan, J.; Yang, S.; Liu, T.; Yu, Y.; Niu, J.; Zhang, Z.; Wang, F. Intermetallic FePt@ PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angew. Chem. 2021, 133, 22070–22075. [Google Scholar] [CrossRef]
- Tian, H.; Wang, X.; Ge, J.; Wan, H.; Ma, W.; Xie, G.; Ge, J. Pt-based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: From Problems to Recent Developments. J. Energy Chem. 2024, 9, 302–324. [Google Scholar] [CrossRef]
- Jang, I.; Ahn, M.; Lee, S.; Yoo, S.J. Surfactant Assisted Geometric Barriers on PtNi@ C Electrocatalyst for Phosphoric Acid Fuel Cells. J. Ind. Eng. Chem. 2022, 110, 198–205. [Google Scholar] [CrossRef]
- Min, J.; Chougule, S.S.; Sravani, B.; Ko, K.; Kim, Y.; Jung, N. A Bottom-up Approach to Solving Technical Challenges in Fuel Cell Systems through Innovative Catalyst Design. Curr. Opin. Electrochem. 2023, 39, 101257. [Google Scholar] [CrossRef]
- An, Z.; Li, H.; Zhang, X.; Xia, Z.; Zhang, H.; Chu, W.; Yu, S.; Wang, S.; Sun, G. Ultrastable and Phosphoric Acid-Resistant PtRhCu@ Pt Oxygen Reduction Electrocatalyst for High-Temperature Polymer Electrolyte Fuel Cells. ACS Catal. 2024, 14, 2572–2581. [Google Scholar] [CrossRef]
- Xu, M.; Xiao, Y.; Liu, T.; Wang, H.; Fan, B.; Dong, Y.; Wang, C.-A. Pt3Co/C Catalyst on the Nitrogen-Doped Carbon Support with High Catalytic Activity and Stability. ACS Appl. Energy Mater. 2024, 7, 2451–2459. [Google Scholar] [CrossRef]
- Dong, A.-Q.; Li, H.; Wu, H.-M.; Li, K.-X.; Shao, Y.-K.; Li, Z.-G.; Sun, S.-H.; Wang, W.-C.; Hu, W.-B. Weakening CO Poisoning over Size-and Support-Dependent Pt n/X-Graphene Catalyst (X= C, B, N, N= 1–6, 13). Rare Met. 2023, 42, 1138–1145. [Google Scholar] [CrossRef]
- Berova, V.; Manjón, A.G.; Paredes, M.V.; Schwarz, T.; Rivas, N.A.; Hengge, K.; Jurzinsky, T.; Scheu, C. Influence of the Shell Thickness on the Degradation of Ru@ Pt Core-Shell Catalysts in PEM Fuel Cells. J. Power Sources 2023, 554, 232327. [Google Scholar] [CrossRef]
- Chougule, S.S.; Jeffery, A.A.; Roy Chowdhury, S.; Min, J.; Kim, Y.; Ko, K.; Sravani, B.; Jung, N. Antipoisoning Catalysts for the Selective Oxygen Reduction Reaction at the Interface between Metal Nanoparticles and the Electrolyte. Carbon Energy 2023, 5, e293. [Google Scholar] [CrossRef]
- Huang, C.; Liu, H.; Tang, Y.; Lu, Q.; Chu, S.; Liu, X.; Shan, B.; Chen, R. Constructing Uniform Sub-3 Nm PtZn Intermetallic Nanocrystals via Atomic Layer Deposition for Fuel Cell Oxygen Reduction. Appl. Catal. B Environ. 2023, 320, 121986. [Google Scholar] [CrossRef]
- Yu, J.-H.; Singh, K.P.; Kim, S.-J.; Kang, T.-H.; Lee, K.-S.; Kim, H.; Ringe, S.; Yu, J.-S. Active and Stable PtP 2-Based Electrocatalysts Solve the Phosphate Poisoning Issue of High Temperature Fuel Cells. J. Mater. Chem. A 2023, 11, 6413–6427. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, S.; Yang, Y.; Gao, Q.; Zhu, S.; Ding, K.; Li, Q.; Shi, P.; Min, Y. Rhombohedral Platinum-Copper Intermetallic Compound: A High Phosphate Tolerance Electrocatalyst for HT-PEMFC. Chem. Eng. J. 2024, 487, 150348. [Google Scholar] [CrossRef]
- Seselj, N.; Alfaro, S.M.; Bompolaki, E.; Cleemann, L.N.; Torres, T.; Azizi, K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. Adv. Mater. 2023, 35, 2302207. [Google Scholar] [CrossRef]
- Long, D.; Xie, Z.; Wang, M.; Chen, S.; Wei, Z. A Phosphate Tolerant Pt-Based Oxygen Reduction Catalyst Enabled by Synergistic Modulation of Alloying and Surface Modification. Chem. Commun. 2023, 59, 14277–14280. [Google Scholar] [CrossRef]
- Yang, T.; Yang, X.; Gao, N.; Tang, M.; Wang, X.; Liu, C.; Xing, W.; Ge, J. High Density Iridium Synergistic Sites Boosting CO-Tolerate Performance for PEMFC Anode. eScience 2024, 4, 100230. [Google Scholar] [CrossRef]
- Ekinci, A.; Büyükkanber, K.; Akdag, A.; Şahin, Ö. Improved Catalytic Activity in PdCo Nanocatalysts Synthesized via Ultrasonic Spray Method for PEMFC Applications. Int. J. Hydrog. Energy 2024, 92, 810–820. [Google Scholar] [CrossRef]
- Fu, H.; Chen, Y.; Lu, S.; Zhang, Z.; Zhu, T.; Li, H.; Lai, F.; Zhang, N.; Liu, T. Anti-Poisoned Oxygen Reduction Reaction by Rice-like Pd–Sb Nanoparticles. J. Mater. Chem. A 2024, 12, 9031–9037. [Google Scholar] [CrossRef]
- Takimoto, D.; Ohnishi, T.; Ayato, Y.; Mochizuki, D.; Sugimoto, W. Suppression of CO Adsorption on PtRu/C Catalysts Modified with Metallic Ruthenium Nanosheets. J. Electrochem. Soc. 2016, 163, F367. [Google Scholar] [CrossRef]
- Kobayshi, T.; Chida, Y.; Todoroki, N.; Wadayama, T. Enhanced Oxygen Reduction Reaction Activity on the Melamine-Modified Pt-High-Entropy Alloy Single-Crystal Lattice Stacking Surface. ACS Catal. 2024, 14, 11512–11521. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, T.; Zhao, X.; Zhang, J.; Lu, Y.; Shen, J.; Lu, S.; Tu, Z.; Xin, H.L.; Wang, D. Combining Structurally Ordered Intermetallics with N-Doped Carbon Confinement for Efficient and Anti-Poisoning Electrocatalysis. Appl. Catal. B Environ. 2020, 279, 119370. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Liu, D.; Li, T.; Yan, Y.; Wei, X.; Yang, Y.; Yan, S.; Zou, Z. N-Doped Graphene-Coated Commercial Pt/C Catalysts toward High-Stability and Antipoisoning in Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2022, 13, 2019–2026. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, Y.; Guan, S.; Guo, W.; Sun, M.; Pan, M. Solving Nafion Poisoning of ORR Catalysts with an Accessible Layer: Designing a Nanostructured Core-shell Pt/C Catalyst via a One-step Self-assembly for PEMFC. Int. J. Energy Res. 2020, 44, 10155–10167. [Google Scholar] [CrossRef]
- Stewart, D.W.; Scott, K.; Wain, A.J.; Rosser, T.E.; Brightman, E.; Macphee, D.; Mamlouk, M. The Role of Tungsten Oxide in Enhancing the Carbon Monoxide Tolerance of Platinum-Based Hydrogen Oxidation Catalysts. ACS Appl. Mater. Interfaces 2020, 12, 37079–37091. [Google Scholar] [CrossRef]
- Borbáth, I.; Salmanzade, K.; Pászti, Z.; Kuncser, A.; Radu, D.; Neaţu, Ş.; Tálas, E.; Sajó, I.E.; Olasz, D.; Sáfrán, G. Strategies to Improve CO Tolerance and Corrosion Resistance of Pt Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells: Sn-Doping of the Mixed Oxide–Carbon Composite Support. Catal. Today 2024, 438, 114788. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Shen, T.; Lu, Y.; Chen, K.; Tu, Z.; Lu, S.; Wang, D. A Low-temperature Carbon Encapsulation Strategy for Stable and Poisoning-tolerant Electrocatalysts. Small Methods 2021, 5, 2100937. [Google Scholar] [CrossRef] [PubMed]
- Al-Tememy, M.G.H.; Devrim, Y. Development of Effective Bimetallic Catalyst for High-temperature PEM Fuel Cell to Improve CO Tolerance. Int. J. Energy Res. 2021, 45, 3343–3357. [Google Scholar] [CrossRef]
- Chatterjee, S.; Griego, C.; Hart, J.L.; Li, Y.; Taheri, M.L.; Keith, J.; Snyder, J.D. Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate. Acs Catal. 2019, 9, 5290–5301. [Google Scholar] [CrossRef]
- Álvarez-Gómez, J.M.; Varela, A.S. Review on Long-Term Stability of Electrochemical CO2 Reduction. Energy Fuels 2023, 37, 15283–15308. [Google Scholar] [CrossRef]
Anode Catalyst | Metal Loading (mg cm−2) | Membrane | Operating Temperature (°C) | CO Gas (ppm) | Decreasing Ratio at 0.6 V (%) |
---|---|---|---|---|---|
PtSn/C | 0.3 | N112 | 80 | 10 | 30 |
PtPd/C | 0.3 | N212 | 80 | 10 | 50 |
PtMo/C | 0.5 | N212 | 70 | 25 | 27 |
PtRu/C | 0.2 | N117 | 80 | 10 | 27 |
PtRu/C | 0.4 | N212 | 75 | 10 | 30 |
PtNi/C | 1.0 | N212 | 75 | 30 | 57 |
PtRuNi/C | 0.4 | N212 | 75 | 10 | 11 |
HOR Activity/A (g-PtRu)−1 | |||
---|---|---|---|
Catalyst | Initial | After 1000 Cycles | After 3000 Cycles |
PtRu/C | 89 | 64 | 55 |
RuO2.1ns-PtRu/C | 111 | 86 | 75 |
Ru(ns)-PtRu/C | 124 | 112 | 97 |
# | Catalyst Composition | Synthesis/Key Method | Target Poison | Key Mechanism for Poison Mitigation | 1. Performance Gains /2. Highlights | Reference |
---|---|---|---|---|---|---|
1 | Pt/TiWN | Nitridation of Pt/TiWC (800 °C in NH3) | CO | Core–shell synergy (Pt shell on transition-metal nitride), lowered CO binding energy | 1. Rapid HOR recovery at ~0.1 V in presence of CO 2. Higher CO tolerance than commercial Pt (Ptcomm) | Aaron Garg et al. [26] |
2 | FePhen@MOF-ArNH3 (Fe-based N-PGM) | MOF-based pyrolysis (Fe-Phen@MOF) with ammonia treatment | Phosphate (H3PO4) | Subsurface Fe encapsulation; minimal phosphate adsorption on Fe sites | 1. Negligible Tafel slope changes under phosphate 2. Enhanced ORR stability and reduced anion poisoning | Kara et al. [32] |
3 | Pt/C + DAcPy | In situ adsorption/reduction of 2,6-diacetylpyridine (DAcPy) | CO, H2S | “Molecular canopy” (tridentate binding); size-selective blocking of CO/H2S while allowing H2 access | 1. Nearly complete prevention of sulfur poisoning 2. No detectable S on Pt surface by XPS | Tao Wang et al. [36] |
4 | PtRu@h-BN/C | Ammonia borane (AB) polymerization + pyrolysis; formation of few-layer h-BN shell | CO | h-BN encapsulation partially blocks CO from PtRu surface | 1. Significantly improved CO tolerance in single-cell tests 2. Only ~20% drop vs. ~60% drop with PtRu/C | Mengmeng Sun et al. [44] |
5 | PtFeAu | One-pot solvothermal synthesis + partial galvanic replacement | CO | Au decoration shifts electron density away from Pt: => weaker CO binding | 1. Largest negative shift in CO stripping 2. High ECSA and stable chronoamperometry | Zhao et al. [52] |
6 | Pt1Ru1Ni0.75/C-PDA-650 | High-temp (600–800 °C) heat treatment + polydopamine coating to form gradient shells | CO | Strong ligand effect (Ni and Ru → Pt): downshift of Pt-CO binding energy | 1. Only 11% performance loss at 0.6 V under CO 2. Superior CO tolerance compared with PtRu/C | Lee et al. [54] |
7 | FePt@PtBi | Leach-embed-rearrangement to create PtBi shells on ordered FePt intermetallic core | CO, CH3OH | Compressive strain + larger Bi atoms: d-band shift, weakened adsorbate binding | 1. ~70% higher current retention vs. commercial Pt/C 2. High methanol and CO tolerance | Jingyu et al. [58] |
8 | PtNi@Cx | Oleylamine carbonization + H2 reduction forming carbon shells of variable thickness | Phosphate (H3PO4) | Geometric barrier: carbon shell prevents phosphate adsorption on PtNi surface | 1. ORR activity quickly recovers even in phosphoric acid 2. Maintains active sites for prolonged operation | Jang et al. [60] |
9 | Pt@MSL (Pt with carbon molecular sieve layer) | Annealing in different gas atmospheres to form controllable carbon shells | Phosphate (H3PO4) | Selective O2 permeation via dense carbon shell; blocks anion diffusion | 1. Increased ORR activity with high molecular-sieving effect 2. Up to ~90% poison-blocking efficiency | Sourabh et al. [66] |
10 | PtP2 | Trioctylphosphine (TOP) route; Pt salt converted to PtP2 phase (amorphous or crystalline) | Phosphate (H3PO4) | Strong P−HPO4− interactions preserve Pt sites: stable at higher potentials | 1. Maintains ORR activity under phosphate poisoning 2. Protective phosphoric oxide oligomers on PtP2 surface | Jeong-Hoon et al. [68] |
11 | Ru(ns)-PtRu/C | Metallization of RuO2.1 nanosheets to form metallic Ru nanosheets on PtRu/C | CO | Metallic Ru nanosheets in close contact with Pt: suppressed CO adsorption | 1. 1.3× higher HOR current after 5 h vs. PtRu/C 2. Superior CO tolerance and durability | Daisuke et al. [75] |
12 | O-Pt-Fe@NC/C | One-step pyrolysis: metal salts + dicyandiamide => N-doped carbon shell + ordered PtFe alloy | CO, SOx, POx | N doping + thin carbon encapsulation: electron modulation + physical blocking | 1. Excellent multi-poison tolerance (CO, SO32−, PO43−) 2. Enhanced performance as HT-PEMFCs cathode | Yezhou Hu et al. [77] |
13 | Pt/C + WO3 | Simple physical mixing of Pt/C with WO3 nanoplatelets | CO | W5+/W6+ redox cycle in WO3: catalytic CO oxidation (tungsten bronze) | 1. Improved CO removal at ~0.3 VRHE 2. Potential for direct methanol fuel cell applications | Douglas et al. [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Jang, I.; Lee, S. Advanced Strategies for Mitigating Catalyst Poisoning in Low and High Temperature Proton Exchange Membrane Fuel Cells: Recent Progress and Perspectives. Crystals 2025, 15, 129. https://doi.org/10.3390/cryst15020129
Choi S, Jang I, Lee S. Advanced Strategies for Mitigating Catalyst Poisoning in Low and High Temperature Proton Exchange Membrane Fuel Cells: Recent Progress and Perspectives. Crystals. 2025; 15(2):129. https://doi.org/10.3390/cryst15020129
Chicago/Turabian StyleChoi, Suyeon, Injoon Jang, and Sehyun Lee. 2025. "Advanced Strategies for Mitigating Catalyst Poisoning in Low and High Temperature Proton Exchange Membrane Fuel Cells: Recent Progress and Perspectives" Crystals 15, no. 2: 129. https://doi.org/10.3390/cryst15020129
APA StyleChoi, S., Jang, I., & Lee, S. (2025). Advanced Strategies for Mitigating Catalyst Poisoning in Low and High Temperature Proton Exchange Membrane Fuel Cells: Recent Progress and Perspectives. Crystals, 15(2), 129. https://doi.org/10.3390/cryst15020129