A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application
Abstract
:1. Introduction
2. Advantages of Hierarchical ZnO Nanostructures and Nanocomposites
2.1. High Surface Area and Porous Structures
2.2. Enhanced Light Harvesting
2.3. Synergistic Nano-Building Blocks and Multi-Components
3. Synthetic Strategies of Hierarchical ZnO Nanostructures and Nanocomposites
3.1. Multistep Sequential Growth Routes
3.2. Template-Based Synthesis
3.2.1. Hierarchical ZnO Hollow Structures
3.2.2. Porous Hierarchical ZnO Nanostructures
3.2.3. Bio-Inspired ZnO Hierarchical Structures
3.3. Template-Free Self-Organization
3.4. Precursor or Self-Templating Strategies
4. Fabrication of Hierarchical ZnO-Based Nanocomposites
5. Photocatalytic Applications of Hierarchical ZnO Nanostructures and Nanocomposites
6. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fujishima, A. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534. [Google Scholar] [CrossRef]
- Miseki, A.K.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Reynolds, D.C.; Loo, D.C.; Jogai, B. Valence-band ordering in ZnO. Phys. Rev. B 1999, 60, 2340–2344. [Google Scholar] [CrossRef]
- Chen, Y.; Bagnall, D.M.; Koh, H.; Park, K.; Hiraga, K.; Zhu, Z.; Yao, T. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys. 1998, 84, 3912. [Google Scholar] [CrossRef]
- Maiti, S.; Pal, S.; Chattopadhyay, K.K. Recent advances in low temperature, solution processed morphology tailored ZnO nanoarchitectures for electron emission and photocatalysis applications. CrystEngComm 2015, 17, 9264–9295. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Z.; Dou, Y.; Kim, J.H.; Dou, S.X. Two-step self-assembly of hierarchically-ordered nanostructures. J. Mater. Chem. A 2015, 3, 11688–11699. [Google Scholar] [CrossRef]
- Saito, N.; Haneda, H. Hierarchical structures of ZnO spherical particles synthesized solvothermally. Sci. Technol. Adv. Mater. 2011, 12, 064707. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Ho, C.; Hou, Y.; Fu, X. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania. Langmuir 2005, 21, 2552–2559. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Ren, T.Z.; Su, B.L. Hierarchically Mesostructured Titania Materials with an Unusual Interior Macroporous Structure. Adv. Mater. 2003, 15, 1462–1465. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Zhou, L.; Xu, H. Bi2WO6 Nano- and Microstructures: Shape Control and Associated Visible-Light-Driven Photocatalytic Activities. Small 2007, 3, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Le, Y.; Cai, W.; Yu, J. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater. 2011, 185, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Yu, J.; Jaroniec, M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. J. Mater. Chem. 2010, 20, 4587. [Google Scholar] [CrossRef]
- Yu, X.; Yu, J.; Cheng, B.; Jaroniec, M. Synthesis of Hierarchical Flower-like AlOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic Properties. J. Phys. Chem. C 2009, 113, 17527–17535. [Google Scholar] [CrossRef]
- Guo, M.Y.; Ng, A.M.C.; Liu, F.; Djurišić, A.B.; Chan, W.K.; Su, H.; Wong, K.S. Effect of Native Defects on Photocatalytic Properties of ZnO. J. Phys. Chem. C 2011, 115, 11095–11101. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Das, P.P.; Maity, S.; Ghosh, P.; Devi, P.S. Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 128–138. [Google Scholar] [CrossRef]
- Wang, J.; Xia, Y.; Dong, Y.; Chen, R.; Xiang, L.; Komarmaneni, S. Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst. Appl. Catal. B Environ. 2016, 192, 8–16. [Google Scholar] [CrossRef]
- Yang, S.J.; Im, J.H.; Kim, T.; Lee, K. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. J. Hazard. Mater. 2011, 186, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Z.; Cai, Q.; Wang, H.; Gao, H.; Lv, W.; Liu, J. Precursor template synthesis of three-dimensional mesoporous ZnO hierarchical structures and their photocatalytic properties. CrystEngComm 2010, 12, 2166. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.C. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem. Commun. 2003, 2078–2079. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.C.; Gong, J.; Li, Q. Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process. Cryst. Growth Des. 2007, 7, 2444–2448. [Google Scholar] [CrossRef]
- Ho, W.; Yu, J.C.; Lee, S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 2006, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.; Basu, M.; Pradhan, M.; Sarkar, S.; Pal, T. Fabrication of Large-Scale Hierarchical ZnO Hollow Spheroids for Hydrophobicity and Photocatalysis. Chem. Eur. J. 2010, 16, 7865–7874. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hsu, Y.; Chen, Y.; Chen, L.; Chen, S.; Chen, K. Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale 2012, 4, 6515. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Dong, F.; Wu, Z. Enhanced extrinsic absorption promotes the visible light photocatalytic activity of wide band-gap (BiO)2CO3 hierarchical structure. RSC Adv. 2014, 4, 56307–56312. [Google Scholar] [CrossRef]
- Ko, S.H.; Lee, D.; Kang, H.; Nam, K.; Yeo, J.; Hong, S.; Grigoropoulos, C.P.; Sung, H. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Chen, Z.; Zhang, N.; Colmenares, J.C.; Xu, Y. Hierarchically CdS Decorated 1D ZnO Nanorods-2D Graphene Hybrids: Low Temperature Synthesis and Enhanced Photocatalytic Performance. Adv. Funct. Mater. 2015, 25, 221–229. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, W.; Keeter-Brewer, M.; Konar, S.; Njabon, R.N.; Tian, Z.R. Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites. J. Am. Chem. Soc. 2006, 128, 10960–10968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Xiang, Q.; Li, H.; Pan, Q.; Xu, P. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties. J. Phys. Chem. C 2009, 113, 3430–3435. [Google Scholar] [CrossRef]
- Xu, F.; Dai, M.; Lu, Y.; Sun, L. Hierarchical ZnO Nanowire−Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 2776–2782. [Google Scholar] [CrossRef]
- Cheng, H.; Chiu, W.; Lee, C.; Tsai, S.; Hsieh, W. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications. J. Phys. Chem. C 2008, 112, 16359–16364. [Google Scholar] [CrossRef]
- Xu, F.; She, Y.; Sun, L.; Zeng, H.; Lu, Y. Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale 2011, 3, 5020–5025. [Google Scholar] [CrossRef]
- Kim, H.; Yong, K. Highly Efficient Photoelectrochemical Hydrogen Generation Using a Quantum Dot Coupled Hierarchical ZnO Nanowires Array. ACS Appl. Mater. Interfaces 2013, 5, 13258–13264. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Lei, B.; Yu, X.; Kuang, D.; Su, C. Hiearchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process. J. Mater. Chem 2011, 21, 8709–8714. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Henley, S.J.; Emerson, N.G.; Silva, S.R.P. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 2014, 6, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Pai, L.; Xue, D. ZnO 3D-Superstructures via Two-Step Assembly at Gas/Liquid Interface. Nanosci. Nanotechnol. Lett. 2011, 3, 429–433. [Google Scholar]
- Guo, H.; Zhu, Q.; Wu, X.; Jiang, Y.; Xie, X.; Xu, A. Oxygen deficient ZnO1−x nanosheets with high visible light photocatalytic activity. Nanoscale 2015, 7, 7216–7223. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Song, L.; Gunawan, P.; Zhong, Z.; She, X.; Su, F. Urchin-like ZnO microspheres synthesized by thermal decomposition of hydrozincite as a copper catalyst promoter for the Rochow reaction. RSC Adv. 2012, 2, 4164. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Xia, Y.; Komarneni, S.; Chen, H.; Xu, J.; Xiang, L.; Xie, D. Hierarchical ZnO Nanosheet-Nanorod Architectures for Fabrication of Poly(3-hexylthiophene)/ZnO Hybrid NO2 Sensor. ACS Appl. Mater. Interfaces 2016, 8, 8600–8607. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Goebl, J.; Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610–2653. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28, 141–145. [Google Scholar] [CrossRef]
- Liu, G.; Wang, T.; Zhang, H.; Meng, X.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. Nature-Inspired Environmental “Phosphorylation” Boosts Photocatalytic H2 Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. Angew. Chemie Int. Ed. 2015, 54, 13561–13565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luan, D.; Boey, F.; Lou, X.W. Fast Formation of SnO2 Nanoboxes with Enhanced Lithium Storage Capability. J. Am. Chem. Soc. 2011, 133, 4738–4741. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chen, J.S.; Qi, G.; Duan, X.; Wang, Z.; Giannelis, E.P.; Archer, L.A.; Lou, X.W. Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.M.; Li, C.C.; Zhang, M.; Hao, Q.Y.; Liu, S.; Chen, L.B.; Wang, T.H. One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries. J. Phys. Chem. C 2010, 114, 8084–8088. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, X.; Guo, Y.; Wan, L. SnO2-Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries. J. Phys. Chem. C 2009, 113, 14213–14219. [Google Scholar] [CrossRef]
- Wang, W.; Dahl, M.; Yin, Y. Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chem. Mater. 2013, 25, 1179–1189. [Google Scholar] [CrossRef]
- Dilger, S.; Wessig, M.; Wagner, M.; Reparaz, J.; Torres, C.; Liang, Q.; Dekorsy, T.; Polarz, S. Nanoarchitecture Effects on Persistent Room Temperature Photoconductivity and Thermal Conductivity in Ceramic Semiconductors: Mesoporous, Yolk–Shell, and Hollow ZnO Spheres. Cryst. Growth Des. 2014, 14, 4593–4601. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Liu, K.; Kim, J.H.; Dou, S.X. Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly. Nano Res. 2013, 6, 726–735. [Google Scholar] [CrossRef]
- Yin, J.; Lu, Q.; Yu, Z.; Wang, J.; Pang, H.; Gao, F. Hierarchical ZnO Nanorod-Assembled Hollow Superstructures for Catalytic and Photoluminescence Applications. Cryst. Growth Des. 2010, 10, 40–43. [Google Scholar] [CrossRef]
- Stein, A.; Li, F.; Denny, N.R. Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles. Chem. Mater. 2008, 20, 649–666. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Z.; Han, D.; Gu, F. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO. ACS Appl. Mater. Interfaces 2016, 8, 5466–5474. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hsu, Y.; Chen, S.; Chen, L.; Chen, K. O2 plasma-activated CuO-ZnO inverse opals as high-performance methanol microreformer. J. Mater. Chem. 2010, 20, 10611. [Google Scholar] [CrossRef]
- Kim, S.H.; Olson, T.Y.; Satcher, J.H.; Han, T.Y.J. Hierarchical ZnO structures templated with amino acid based surfactants. Microporous Mesoporous Mater. 2012, 151, 64–69. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H. Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates. Microporous Mesoporous Mater. 2006, 92, 227–233. [Google Scholar] [CrossRef]
- Tseng, Y.; Liu, M.; Kuo, Y.; Chen, P.; Chen, C.; Chen, Y.; Mou, C. Biomimetic ZnO plate twin-crystals periodical arrays. Chem. Commun. 2012, 48, 3215. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Men, X.; Sun, H.; She, P.; Zhang, W.; Wu, C.; Qin, W.; Chen, X. Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films. J. Mater. Chem. A 2015, 3, 12016–12022. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Li, W.; Dou, Y.; Liu, K.; Jiang, l.; Kim, S.; Kim, J.; Dou, S. Fish-scale bio-inspired multifunctional ZnO nanostructures. NPG Asia Mater. 2015, 7, e232. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures. Small 2014, 10, 3001–3006. [Google Scholar] [CrossRef] [PubMed]
- Li, C.C.; Yin, X.M.; Li, Q.H.; Wang, T.H. Enhanced gas sensing properties of ZnO/SnO2 hierarchical architectures by glucose-induced attachment. CrystEngComm 2011, 13, 1557–1563. [Google Scholar] [CrossRef]
- Limo, M.J.; Ramasamy, R.; Perry, C.C. ZnO Binding Peptides: Smart Versatile Tools for Controlled Modification of ZnO Growth Mechanism and Morphology. Chem. Mater. 2015, 27, 1950–1960. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Wan, Q.; Dai, G.; Zhou, C.; Zou, B. Controllable ZnO Architectures by Ethanolamine-Assisted Hydrothermal Reaction for Enhanced Photocatalytic Activity. J. Phys. Chem. C 2011, 115, 2769–2775. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, X.; Zhang, P.; Han, Y.; Chen, X.; Yan, Y.; Li, S. Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities. Cryst. Growth Des. 2008, 8, 3010–3018. [Google Scholar] [CrossRef]
- Zhang, X.L.; Qiao, R.; Qiu, R.; Kim, J.C.; Kang, Y.S. Fabrication of Hierarchical ZnO Nanostructures via a Surfactant-Directed Process. Cryst. Growth Des. 2009, 9, 2906–2910. [Google Scholar] [CrossRef]
- Stan, A.; Munteanu, C.; Musuc, A.; Birjega, R.; Ene, R.; Ianculescu, A.; Raut, I.; Jecu, L.; Doni, M.; Anghel, E.; et al. A general, eco-friendly synthesis procedure of self-assembled ZnO-based materials with multifunctional properties. Dalton Trans. 2015, 44, 7844–7853. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.; Fan, X.; Wan, L.; Sheng, Z.; Ye, J.H.; Zhou, Y.; et al. A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2. Angew. Chemie Int. Ed. 2010, 49, 6400–6404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, W.; Geobl, J.; Yin, Y. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494–507. [Google Scholar] [CrossRef]
- Zeng, H.C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 2006, 16, 649–662. [Google Scholar] [CrossRef]
- Wang, H.; Rogach, A.L. Hierarchical SnO2 Nanostructures: Recent Advances in Design, Synthesis, and Applications. Chem. Mater. 2014, 26, 123–133. [Google Scholar] [CrossRef]
- Wang, D.; Du, S.; Zhou, X.; Wang, B.; Ma, J.; Sun, P.; Sun, Y.; Lu, G. Template-free synthesis and gas sensing properties of hierarchical hollow ZnO microspheres. CrystEngComm 2013, 15, 7438. [Google Scholar] [CrossRef]
- Jia, Q.; Ji, H.; Zhang, Y.; Chen, Y.; Sun, X.; Jin, Z. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 2014, 276, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Qi, L. Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal. Nanotechnology 2012, 23, 235604. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhu, C.; Wang, L.; Zhao, C.; Li, W.; Fung, K.; Ma, T.; Hagfeldt, A.; Wang, N. Ultrarapid Sonochemical Synthesis of ZnO Hierarchical Structures: From Fundamental Research to High Efficiencies up to 6.42% for Quasi-Solid Dye-Sensitized Solar Cells. Chem. Mater. 2013, 25, 1000–1012. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, H. One-step self-assembly economical synthesis of hierarchical ZnO nanocrystals and their gas-sensing properties. CrystEngComm 2013, 15, 9148–9153. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, C.; Wang, L.; Li, W.; Cheng, C.; Ho, K.; Fung, K.; Wang, N. Optimizing nanosheet-based ZnO hierarchical structure through ultrasonic-assisted precipitation for remarkable photovoltaic enhancement in quasi-solid dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 13097. [Google Scholar] [CrossRef]
- Krishnapriya, R.; Praneetha, S.; Murugan, A.V. Investigation of the effect of reaction parameters on the microwave-assisted hydrothermal synthesis of hierarchical jasmine-flower-like ZnO nanostructures for dye-sensitized solar cells. New J. Chem. 2016, 40, 5080–5089. [Google Scholar] [CrossRef]
- Xu, X.; Wu, M.; Asoro, M.; Ferreira, P.J.; Fan, D.L. One-Step Hydrothermal Synthesis of Comb-Like ZnO Nanostructures. Cryst. Growth Des. 2012, 12, 4829–4833. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Guo, D.; Han, H.; Wang, H.; Gao, Z.; Wu, D.; Jiang, K. Room-temperature synthesis of pompon-like ZnO hierarchical structures and their enhanced photocatalytic properties. Res. Chem. Intermed. 2012, 38, 1579–1589. [Google Scholar] [CrossRef]
- Gao, R.; Liang, Z.; Tian, J.; Zhang, Q.; Wang, L.; Cao, G. ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells. Nano Energy 2013, 2, 40–48. [Google Scholar] [CrossRef]
- Li, F.; Gong, F.; Xiao, Y.; Zhang, A.; Zhao, J.; Fang, S.; Jia, D. ZnO Twin-Spheres Exposed in ±(001) Facets: Stepwise Self-Assembly Growth and Anisotropic Blue Emission. ACS Nano 2013, 7, 10482–10491. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Feng, H.; Rao, H.; Xu, Y.; Kuang, D.; Su, C. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nat. Commun. 2014, 5, 3968. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sun, K.; Kotov, N.A. Formation and Assembly−Disassembly Processes of ZnO Hexagonal Pyramids Driven by Dipolar and Excluded Volume Interactions. J. Am. Chem. Soc. 2010, 132, 1860–1872. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Cai, W.; Zhang, Y. ZnO Hierarchical Micro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance. Adv. Funct. Mater. 2008, 18, 1047–1056. [Google Scholar] [CrossRef]
- Pachauri, V.; Kern, K.; Balasubramanian, K. Template-free self-assembly of hierarchical ZnO structures from nanoscale building blocks. Chem. Phys. Lett. 2010, 498, 317–322. [Google Scholar] [CrossRef]
- Chetia, T.R.; Ansari, M.S.; Qureshi, M. Rational design of hierarchical ZnO superstructures for efficient charge transfer: Mechanistic and photovoltaic studies of hollow, mesoporous, cage-like nanostructures with compacted 1D building blocks. Phys. Chem. Chem. Phys. 2016, 18, 5344–5357. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.A.; Sartale, S.D. Facile Soft Solution Route to Engineer Hierarchical Morphologies of ZnO Nanostructures. Cryst. Growth Des. 2015, 15, 4813–4820. [Google Scholar] [CrossRef]
- Wang, J.; Hou, S.; Zhang, L.; Chen, J.; Xiang, L. Ultra-rapid formation of ZnO hierarchical structures from dilution-induced supersaturated solutions. CrystEngComm 2014, 16, 7115. [Google Scholar] [CrossRef]
- Liu, S.; Li, C.; Yu, J.; Xiang, Q. Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 2011, 13, 2533–2541. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Giri, A.; Pal, P.; Pahari, S.; Bajaj, H.; Panda, A. A rapid and green synthetic approach for hierarchically assembled porous ZnO nanoflakes with enhanced catalytic activity. J. Mater. Chem. 2012, 22, 17227. [Google Scholar] [CrossRef]
- Liang, W.; Li, W.; Chen, H.; Liu, H.; Zhu, L. Exploiting electrodeposited flower-like Zn4(OH)6SO4•4H2O nanosheets as precursor for porous ZnO nanosheets. Electrochim. Acta 2015, 156, 171–178. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Liu, J.; Wang, F.; Kong, J.; Qiu, S.; He, C.; Luan, L. Synthesis of Nestlike ZnO Hierarchically Porous Structures and Analysis of Their Gas Sensing Properties. ACS Appl. Mater. Interfaces 2012, 4, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Tang, P.; Wang, Y.; Feng, Y.; Chen, A.; Luo, R.; Li, D. Facile synthesis and gas sensing properties of tubular hierarchical ZnO self-assembled by porous nanosheets. Sens. Actuators B Chem. 2015, 215, 231–240. [Google Scholar] [CrossRef]
- Yu, S.; Wang, C.; Yu, J.; Shi, W.; Deng, R.; Zhang, H. Precursor induced synthesis of hierarchical nanostructured ZnO. Nanotechnology 2006, 17, 3607–3612. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zou, X.; Zhou, L.; Feng, L.; Jin, P.; Liu, Y.; Li, G. Precursor-mediated synthesis and sensing properties of wurtzite ZnO microspheres composed of radially aligned porous nanorods. Dalton Trans. 2013, 42, 14357. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Tian, C.; Jiang, B.; Wu, A.; Zhang, Q.; Tian, G.; Fu, H. Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. J. Mater. Chem. A 2013, 1, 5700. [Google Scholar] [CrossRef]
- Jang, E.; Won, J.; Kim, Y.; Cheng, Z.; Choy, J. Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS. J. Solid State Chem. 2010, 183, 1835–1840. [Google Scholar] [CrossRef]
- Li, Y.; Che, Z.; Sun, X.; Dou, J.; Wei, M. Metal–organic framework derived hierarchical ZnO parallelepipeds as an efficient scattering layer in dye-sensitized solar cells. Chem. Commun. 2014, 50, 9769. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.L.; Badour, C.A.; Liao, B.Q. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol. A Chem. 2008, 194, 11–19. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, G.; Liu, M.; Zhang, Z.; Tong, X.; Cao, T. Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes. J. Phys. Chem. C 2009, 113, 19067–19076. [Google Scholar] [CrossRef]
- Xiao, F. Construction of Highly Ordered ZnO–TiO2 Nanotube Arrays (ZnO/TNTs) Heterostructure for Photocatalytic Application. ACS Appl. Mater. Interfaces 2012, 4, 7055–7063. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Hung, S.; Tao, H.; Miao, J.; Yang, H.; Liu, B. Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: Towards intimate integration of 1D-1D hybrid nanostructures. Nanoscale 2014, 6, 14950–14961. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Dong, Y.; Zhou, W.; Pan, Q.; Xie, Y.; Tian, G.; Wang, G. Facile Fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting. ACS Appl. Mater. Interfaces 2013, 5, 8314–8320. [Google Scholar] [CrossRef] [PubMed]
- Athauda, T.J.; Neff, J.G.; Sutherlin, L.; Butt, U.; Ozer, R.R. Systematic Study of the Structure–Property Relationships of Branched Hierarchical TiO2/ZnO Nanostructures. ACS Appl. Mater. Interfaces 2012, 4, 6917–6926. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.W.; Zhu, Y.J.; Yang, L.X. ZnO–SnO2 Hollow Spheres and Hierarchical Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties. Adv. Funct. Mater. 2007, 17, 59–64. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, B.; Yang, H.; Zhou, W.; Sun, L.; Chen, R.; Yu, S.; Zhang, J.; Gong, H.; Sun, H.; et al. Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties. ACS Nano 2009, 3, 3069–3076. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, M.; Tang, Z.; Xu, Y. A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale 2014, 6, 7193. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Xu, J.; Zhang, Y.; Ma, S.; Xin, L.; Zhu, L.; Xu, C. Optical Properties and Photocatalytic Performances of Pd Modified ZnO Samples. J. Phys. Chem. C 2009, 113, 18761–18767. [Google Scholar] [CrossRef]
- Georgekutty, R.; Seery, M.K.; Pillai, S.C. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. J. Phys. Chem. C 2008, 112, 13563–13570. [Google Scholar] [CrossRef]
- Ahmad, M.; Shi, Y.; Nisar, A.; Sun, H.; Shen, W.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723. [Google Scholar] [CrossRef]
- Xia, W.; Mei, C.; Zeng, X.; Fan, G.; Lu, J.; Meng, X.; Shen, X. Nanoplate-Built ZnO Hollow Microspheres Decorated with Gold Nanoparticles and Their Enhanced Photocatalytic and Gas-Sensing Properties. ACS Appl. Mater. Interfaces 2015, 7, 11824–11832. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Yu, X.; Lei, B.; Chen, H.; Kuang, D.; Su, C. Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. J. Phys. Chem. C 2012, 116, 8111–8117. [Google Scholar] [CrossRef]
- Zhang, W. Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays. Nanotechnology 2006, 17, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Anandan, S.; Ohashi, N.; Miyauchi, M. ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Appl. Catal. B Environ. 2010, 100, 502–509. [Google Scholar] [CrossRef]
- Hasnat, M.; Uddin, M.; Samed, A.; Alam, S.; Hossain, S. Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces. J. Hazard. Mater. 2007, 147, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Peternel, I.T.; Koprivanac, N.; Božić, A.; Kušić, H. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J. Hazard. Mater. 2007, 148, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, H.; Xu, S.; Sun, D. Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation. Int. J. Hydrog. Energy 2011, 36, 13473–13480. [Google Scholar] [CrossRef]
- Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R.; Qian, F.; Zhang, J.; Li, Y. Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2009, 9, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Wang, T.; Su, F.; Zhang, P.; Li, C.; Gong, J. Facile synthesis of ZnO nanopencil arrays for photoelectrochemical water splitting. Nano Energy 2014, 7, 143–150. [Google Scholar] [CrossRef]
- Wolcott, A.; Smith, W.; Kuykendall, T.; Zhao, Y.; Zhang, J. Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting. Adv. Funct. Mater. 2009, 19, 1849–1856. [Google Scholar] [CrossRef]
- Zhang, C.; Shao, M.; Ning, F.; Xu, S.; Li, Z.; Wei, M.; Evans, D.G.; Duan, X. Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 2015, 12, 231–239. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem. 2004, 162, 317–322. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surface Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, L.L.; Ma, J.; Zhao, X.S. Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem. Commun. 2010, 46, 6099. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, G.; Zhao, J. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions. J. Phys. Chem. B 1998, 102, 5845–5851. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, X.; Hou, Q.; Wang, D.; Zhou, W.; Chen, J. Iodine-Doped ZnO Nanocrystalline Aggregates for Improved Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23, 3–5. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H.B.; Zheng, Y.Z.; Ye, R.; Tao, X.; Chen, J.F. Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light- driven photocatalytic and antibacterial activity. Nanoscale 2015, 7, 19118–19128. [Google Scholar] [CrossRef] [PubMed]
- DuChene, J.S.; Sweeny, B.C.; Johnston-Peck, A.C.; Su, D.; Stach, E.A.; Wei, W.D. Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis. Angew. Chemie Int. Ed. 2014, 53, 7887–7891. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, J.; Peng, T. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B Environ. 2016, 181, 220–227. [Google Scholar] [CrossRef]
- Xu, F.; Volkov, V.; Zhu, Y.; Bai, H.; Rea, A.; Valappil, N.; Su, W.; Gao, X.; Kuskovsky, I.; Matsui, H. Long Electron−Hole Separation of ZnO-CdS Core−Shell Quantum Dots. J. Phys. Chem. C 2009, 113, 19419–19423. [Google Scholar] [CrossRef]
- Eley, C.; Li, T.; Liao, F.; Fairclough, S.; Smith, J.; Smith, G.; Tsang, S. Nanojunction-Mediated Photocatalytic Enhancement in Heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO Nanocrystals. Angew. Chemie Int. Ed. 2014, 53, 7838–7842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wang, W.; Pei, D.; Yu, H. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 2016, 92, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Linic, S. Christopher and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, H.; Zhang, L. New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis. Chem. Eur. J. 2012, 18, 6360–6369. [Google Scholar] [CrossRef] [PubMed]
- Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. J. Am. Chem. Soc. 2008, 130, 1676–1680. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.K.; Krishnamoorthy, S.; Tan, L.K.; Chiam, S.Y.; Tripathy, S.; Gao, H. Field Effects in Plasmonic Photocatalyst by Precise SiO2 Thickness Control Using Atomic Layer Deposition. ACS Catal. 2011, 1, 300–308. [Google Scholar] [CrossRef]
- Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.H. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813–9825. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Pu, Y.; Chang, K.; Liang, Y.; Liu, C.; Yeh, J.; Shih, H.; Hsu, Y. Ag-Nanoparticle-Decorated SiO2 Nanospheres Exhibiting Remarkable Plasmon-Mediated Photocatalytic Properties. J. Phys. Chem. C 2012, 116, 19039–19045. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, S.; Xu, Y. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 2012, 4, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, B.; Zhang, H.; Ding, P.; Wang, Q. Sandwiched ZnO@Au@Cu2O Nanorod Films as Efficient Visible-Light-Driven Plasmonic Photocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 4066–4074. [Google Scholar] [CrossRef] [PubMed]
- Barpuzary, D.; Khan, Z.; Vinothkumar, Z.; De, M.; Qusheshi, M. Hierarchically Grown Urchinlike CdS@ZnO and CdS@Al2O3 Heteroarrays for Efficient Visible-Light-Driven Photocatalytic Hydrogen Generation. J. Phys. Chem. C 2012, 116, 150–156. [Google Scholar] [CrossRef]
- Kargar, A.; Sun, K.; Jing, Y.; Choi, C.; Jeong, H.; Jung, G.Y.; Jin, S.; Wang, D. 3D Branched Nanowire Photoelectrochemical Electrodes for Efficient Solar Water Splitting. ACS Nano 2013, 7, 9407–9415. [Google Scholar] [CrossRef] [PubMed]
- Kargar, A.; Jing, Y.; Kim, S.J.; Riley, C.T.; Pan, X.; Wang, D. ZnO/CuO Heterojunction Branched Nanowires for Photoelectrochemical Hydrogen Generation. ACS Nano 2013, 7, 11112–11120. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.; Chang, C.; Weng, H. Efficient H2 Production Using Ag2S-Coupled ZnO@ZnS Core–Shell Nanorods Decorated Metal Wire Mesh as an Immobilized Hierarchical Photocatalyst. ACS Sustain. Chem. Eng. 2016, 4, 1381–1391. [Google Scholar] [CrossRef]
- Yu, Z.B.; Xie, Y.P.; Liu, G.; Lu, G.Q.; Ma, X.L.; Cheng, H.M. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2013, 1, 2773. [Google Scholar] [CrossRef]
- Maeda, K.; Xiong, A.; Yoshinaga, T.; Iketa, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D.; Kanehara, M.; Setoyama, T.; et al. Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and Oxygen Evolution under Visible Light. Angew. Chemie Int. Ed. 2010, 49, 4096–4099. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, P.; Ahn, H.J.; Lee, J.S.; Yoon, J.C.; Jang, J.H. Hierarchical Metal/Semiconductor Nanostructure for Efficient Water Splitting. Small 2013, 13, 2341–2347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Kang, Z. 3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Wang, J.; Chen, R.; Zhou, D.; Xiang, L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals 2016, 6, 148. https://doi.org/10.3390/cryst6110148
Xia Y, Wang J, Chen R, Zhou D, Xiang L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals. 2016; 6(11):148. https://doi.org/10.3390/cryst6110148
Chicago/Turabian StyleXia, Yi, Jing Wang, Ruosong Chen, Dali Zhou, and Lan Xiang. 2016. "A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application" Crystals 6, no. 11: 148. https://doi.org/10.3390/cryst6110148
APA StyleXia, Y., Wang, J., Chen, R., Zhou, D., & Xiang, L. (2016). A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals, 6(11), 148. https://doi.org/10.3390/cryst6110148