Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Ni1/3Co1/3Mn1/3CO3
2.2. Synthesis Mechanism
2.3. Regulations on the Size and Composition
3. Materials and Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reimers, J.N.; Dahn, J.R. Electrochemical and in-situ x-ray-diffraction studies of lithium intercalation in lixcoo2. J. Electrochem. Soc. 1992, 139, 2091–2097. [Google Scholar] [CrossRef]
- Ohzuku, T.; Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 2001, 642–643. [Google Scholar] [CrossRef]
- Shaju, K.M.; Rao, G.V.S.; Chowdari, B.V.R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 2002, 48, 145–151. [Google Scholar] [CrossRef]
- Lee, M.H.; Kang, Y.J.; Myung, S.T.; Sun, Y.K. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948. [Google Scholar] [CrossRef]
- Park, S.H.; Yoon, C.S.; Kang, S.G.; Kim, H.S.; Moon, S.I.; Sun, Y.K. Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim. Acta 2004, 49, 557–563. [Google Scholar] [CrossRef]
- Liu, Z.L.; Yu, A.S.; Lee, J.Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sour. 1999, 81, 416–419. [Google Scholar] [CrossRef]
- Hwang, B.J.; Tsai, Y.W.; Carlier, D.; Ceder, G. A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem. Mater. 2003, 15, 3676–3682. [Google Scholar] [CrossRef]
- Lu, Z.H.; MacNeil, D.D.; Dahn, J.R. Layered Li[NixCo1–2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid State Lett. 2001, 4, A200–A203. [Google Scholar] [CrossRef]
- MacNeil, D.D.; Lu, Z.; Dahn, J.R. Structure and electrochemistry of Li[NixCo1–2xMnx]O2 (0 ≤ x ≤ 1/2). J. Electrochem. Soc. 2002, 149, A1332–A1336. [Google Scholar] [CrossRef]
- Jouanneau, S.; Dahn, J.R. Preparation, structure, and thermal stability of new NixCo1–2xMnx(OH)2 (0 ≤ x ≤ 1/2) phases. Chem. Mater. 2003, 15, 495–499. [Google Scholar] [CrossRef]
- Jouanneau, S.; Eberman, K.W.; Krause, L.J.; Dahn, J.R. Synthesis, Characterization, and Electrochemical Behavior of Improved Li[NixCo1−2xMnx]O2 (0.1 ≤ x ≤ 0.5). J. Electrochem. Soc. 2003, 150, A1637. [Google Scholar] [CrossRef]
- Lee, B.R.; Noh, H.J.; Myung, S.T.; Amine, K.; Sun, Y.K. High-Voltage Performance of Li Ni0.55Co0.15Mn0.30 O2 Positive Electrode Material for Rechargeable Li-Ion Batteries. J. Electrochem. Soc. 2011, 158, A180–A186. [Google Scholar] [CrossRef]
- Nam, K.-M.; Kim, H.-J.; Kang, D.-H.; Kim, Y.-S.; Song, S.-W. Ammonia-free coprecipitation synthesis of a Ni–Co–Mn hydroxide precursor for high-performance battery cathode materials. Green Chem. 2015, 17, 1127–1135. [Google Scholar] [CrossRef]
- Cho, T.H.; Park, S.M.; Yoshio, M.; Hirai, T.; Hideshima, Y. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method. J. Power Sour. 2005, 142, 306–312. [Google Scholar] [CrossRef]
- Park, S.H.; Kang, S.H.; Belharouak, I.; Sun, Y.K.; Amine, K. Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)(1−x)O2 cathode materials. J. Power Sour. 2008, 177, 177–183. [Google Scholar] [CrossRef]
- Wu, K.C.; Wang, F.; Gao, L.L.; Li, M.R.; Xiao, L.L.; Zhao, L.T.; Hu, S.J.; Wang, X.J.; Xu, Z.L.; Wu, Q.G. Effect of precursor and synthesis temperature on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2. Electrochim. Acta 2012, 75, 393–398. [Google Scholar] [CrossRef]
- Wang, D.; Belharouak, I.; Koenig, G.M.; Zhou, G.; Amine, K. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes. J. Mater. Chem. 2011, 21, 9290. [Google Scholar] [CrossRef]
- Li, D.C.; Noguchi, H.; Yoshio, M. Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2 (0 < x ≤ 0.1) prepared by spray dry method. Electrochim. Acta 2004, 50, 427–430. [Google Scholar]
- Kim, J.-M.; Chung, H.-T. Role of transition metals in layered Li[Ni,Co,Mn]O2 under electrochemical operation. Electrochim. Acta 2004, 49, 3573–3580. [Google Scholar] [CrossRef]
- Na, S.H.; Kim, H.S.; Moon, S.I. The effect of Si doping on the electrochemical characteristics of LiNixMnyCo(1−x−y)O2. Solid State Ion. 2005, 176, 313–317. [Google Scholar] [CrossRef]
- Li, J.G.; He, X.M.; Zhao, R.S.; Wan, C.R.; Jiang, C.Y.; Xia, D.G.; Zhang, S.C. Stannum doping of layered LiNi3/8Co2/8Mn3/8O2 cathode materials with high rate capability for Li-ion batteries. J. Power Sour. 2006, 158, 524–528. [Google Scholar] [CrossRef]
- Sun, Y.K.; Myung, S.T.; Kim, M.H.; Prakash, J.; Amine, K. Synthesis and characterization of Li (Ni0.8Co0.1Mn0.1)(0.8)(Ni0.5Mn0.5)(0.2)O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc. 2005, 127, 13411–13418. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.K.; Chen, Z.; Noh, H.J.; Lee, D.J.; Jung, H.G.; Ren, Y.; Wang, S.; Yoon, C.S.; Myung, S.T.; Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Kiziltas-Yavuz, N.; Herklotz, M.; Hashem, A.M.; Abuzeid, H.M.; Schwarz, B.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol-gel method using table sugar as chelating agent. Electrochim. Acta 2013, 113, 313–321. [Google Scholar] [CrossRef]
- Chen, C.H.; Wang, C.J.; Hwang, B.J. Electrochemical performance of layered Li NixCo1–2xMnxO2 cathode materials synthesized by a sol-gel method. J. Power Sour. 2005, 146, 626–629. [Google Scholar] [CrossRef]
- Gan, C.L.; Hu, X.H.; Zhan, H.; Zhou, Y.H. Synthesis and characterization of Li1.2Ni0.6Co0.2Mn0.2O2+δ as a cathode material for secondary lithium batteries. Solid State Ion. 2005, 176, 687–692. [Google Scholar] [CrossRef]
- Zhang, S.; Qiu, X.; He, Z.; Weng, D.; Zhu, W. Nanoparticled Li(Ni1/3Co1/3Mn1/3)O2 as cathode material for high-rate lithium-ion batteries. J. Power Sour. 2006, 153, 350–353. [Google Scholar] [CrossRef]
- Li, Y.; Han, Q.; Ming, X.; Ren, M.; Li, L.; Ye, W.; Zhang, X.; Xu, H.; Li, L. Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode material prepared by a novel hydrothermal process. Ceram. Int. 2014, 40, 14933–14938. [Google Scholar] [CrossRef]
- Qian, Y.X.; Deng, Y.F.; Shi, Z.C.; Zhou, Y.B.; Zhuang, Q.C.; Chen, G.H. Sub-micrometer-sized LiMn1.5Ni0.5O4 spheres as high rate cathode materials for long-life lithium ion batteries. Electrochem. Commun. 2013, 27, 92–95. [Google Scholar] [CrossRef]
- Li, J.L.; Cao, C.B.; Xu, X.Y.; Zhu, Y.Q.; Yao, R.M. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 11848–11852. [Google Scholar] [CrossRef]
- He, P.; Wang, H.; Qi, L.; Osaka, T. Electrochemical characteristics of layered LiNi1/3Co1/3Mn1/3O2 and with different synthesis conditions. J. Power Sour. 2006, 160, 627–632. [Google Scholar] [CrossRef]
- Ju, J.H.; Ryu, K.S. Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries. J. Alloy. Compd. 2011, 509, 7985–7992. [Google Scholar] [CrossRef]
- Xiang, Y.; Yin, Z.; Li, X. Synthesis and characterization of manganese-, nickel-, and cobalt-containing carbonate precursors for high capacity Li-ion battery cathodes. J. Solid State Electrochem. 2014, 18, 2123–2129. [Google Scholar] [CrossRef]
- Luo, X.; Wang, X.; Liao, L.; Gamboa, S.; Sebastian, P.J. Synthesis and characterization of high tap-density layered Li Ni(1/3)Co(1/3)Mn(1/3) O(2) cathode material via hydroxide co-precipitation. J. Power Sour. 2006, 158, 654–658. [Google Scholar] [CrossRef]
- Atsumi, T.; Nakata, Y.; Kobayakawa, K.; Negishi, K.; Yamazaki, N.; Sato, Y. Particle size effect of LiCoO2 powders on discharge performance of lithium ion batteries. Electrochemistry 2001, 69, 603–607. [Google Scholar]
- Cho, M.Y.; Kim, H.; Kim, H.; Lim, Y.S.; Kim, K.B.; Lee, J.W.; Kang, K.; Roh, K.C. Size-selective synthesis of mesoporous LiFePO4/C microspheres based on nucleation and growth rate control of primary particles. J. Mater. Chem. A 2014, 2, 5922–5927. [Google Scholar] [CrossRef]
- Van Bommel, A.; Dahn, J.R. Analysis of the Growth Mechanism of Coprecipitated Spherical and Dense Nickel, Manganese, and Cobalt-Containing Hydroxides in the Presence of Aqueous Ammonia. Chem. Mater. 2009, 21, 1500–1503. [Google Scholar] [CrossRef]
- Myung, S.T.; Lee, M.H.; Komaba, S.; Kumagai, N.; Sun, Y.K. Hydrothermal synthesis of layered Li Ni1/3Co1/3Mn1/3 O2 as positive electrode material for lithium secondary battery. Electrochim. Acta 2005, 50, 4800–4806. [Google Scholar] [CrossRef]
- Wu, F.; Wang, M.; Su, Y.F.; Bao, L.Y.; Chen, S. A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery. J. Power Sour. 2010, 195, 2362–2367. [Google Scholar] [CrossRef]
- Kim, H.; Min, K.I.; Inoue, K.; Im, D.J.; Kim, D.P.; Yoshida, J. Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science 2016, 352, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Elvira, K.S.; Solvas, X.C.I.; Wootton, R.C.R.; deMello, A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, J.I.; Nagaki, A.; Yamada, T. Flash chemistry: Fast chemical synthesis by using microreactors. Chem. Eur. J. 2008, 14, 7450–7459. [Google Scholar] [CrossRef] [PubMed]
- Cho, J. LiNi0.74Co0.26−xMgxO2 cathode material for a Li-ion cell. Chem. Mater. 2000, 12, 3089–3094. [Google Scholar] [CrossRef]
- Leubner, I.H. Particle nucleation and growth models. Curr. Opin. Colloid Interface Sci. 2000, 5, 151–159. [Google Scholar] [CrossRef]
- Li, J.F.; Xiong, S.L.; Li, X.W.; Qian, Y.T. Spinel Mn1.5Co1.5O4 core-shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. J. Mater. Chem. 2012, 22, 23254–23259. [Google Scholar] [CrossRef]
- Jo, M.; Lee, Y.K.; Kim, K.M.; Cho, J. Nanoparticle-Nanorod Core-Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries. J. Electrochem. Soc. 2010, 157, A841–A845. [Google Scholar] [CrossRef]
Ratio of Starting Materials | Expected Formula | Determined Compositions | ||
---|---|---|---|---|
Ni | Co | Mn | ||
Ni:Co:Mn = 1:1:1 | Ni1/3Co1/3Mn1/3CO3 | 0.2958 | 0.3411 | 0.3631 |
Ni:Co:Mn = 4:2:4 | Ni0.4Co0.2Mn0.4CO3 | 0.3819 | 0.2042 | 0.4139 |
Ni:Co:Mn = 5:2:3 | Ni0.5Co0.2Mn0.3CO3 | 0.4968 | 0.2042 | 0.2990 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Lu, Y.; Luo, G. Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres. Crystals 2016, 6, 156. https://doi.org/10.3390/cryst6110156
Tang Y, Lu Y, Luo G. Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres. Crystals. 2016; 6(11):156. https://doi.org/10.3390/cryst6110156
Chicago/Turabian StyleTang, Yanqing, Yangcheng Lu, and Guangsheng Luo. 2016. "Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres" Crystals 6, no. 11: 156. https://doi.org/10.3390/cryst6110156
APA StyleTang, Y., Lu, Y., & Luo, G. (2016). Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres. Crystals, 6(11), 156. https://doi.org/10.3390/cryst6110156