Effect of HNO3 Concentration on the Morphologies and Properties of Bi2WO6 Photocatalyst Synthesized by a Hydrothermal Method
Abstract
:1. Introduction
2. Results
2.1. Structural Analysis
2.2. Morphologies Analysis
2.3. Raman Analysis
2.4. Surface Area Characterization
2.5. Photocatalytic Study
3. Materials and Methods
3.1. Sample Preparation
3.2. Sample Characterization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
References
- Zhang, Q.; Liu, Y.; Bu, X.; Wu, T.; Feng, P. A rare (3, 4)-connected chalcogenide superlattice and its photoelectric effect. Angew. Chem. Int. Ed. 2008, 47, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Miao, J.; Li, P.Z.; Teng, W.Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type Ti (iv)-based metal–organic framework with visible-light photo-response. Chem. Commun. 2014, 50, 3786–3788. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kanhere, P.D.; Wong, C.L.; Tian, Y.; Feng, Y.; Boey, F.; Wu, T.; Chen, H.; White, T.J.; Chen, Z.; et al. Hydrazine-hydrothermal method to synthesize three-dimensional chalcogenide framework for photocatalytic hydrogen generation. J. Solid State Chem. 2010, 183, 2644–2649. [Google Scholar] [CrossRef]
- Gao, J.; Cao, S.; Tay, Q.; Liu, Y.; Yu, L.; Ye, K.; Mun, P.C.S.; Li, Y.; Rakesh, G.; Chye, S.; et al. Molecule-Based Water-Oxidation Catalysts (WOCs): Cluster-Size-Dependent Dye-Sensitized Polyoxometalates for Visible-Light-Driven O2 Evolution. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.H.B.; Wang, J.X.; Lin, J.S.; Chung, W.-H.; Lin, W.-Y.; Chen, C.-C. Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye. Catal. Today 2011, 174, 148–159. [Google Scholar] [CrossRef]
- Fan, H.J.; Lu, C.S.; Lee, W.L.W.; Chiou, M.-R.; Chen, C.-C. Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. J. Hazard. Mater. 2011, 185, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.T.; Jiang, Y.R.; Chou, S.Y.; Dai, Y.-M.; Chen, C.-C. Synthesis, characterization, photocatalytic activity of visible-light-responsive photocatalysts BiOxCly/BiOmBrn by controlled hydrothermal method. J. Mol. Catal. A Chem. 2014, 391, 105–120. [Google Scholar] [CrossRef]
- Lin, H.P.; Lee, W.W.; Huang, S.T.; Chen, L.-W.; Yeh, T.-W.; Fu, J.-Y.; Chen, C.-C. Controlled hydrothermal synthesis of PbBiO2Br/BiOBr heterojunction with enhanced visible-driven-light photocatalytic activities. J. Mol. Catal. A Chem. 2016, 417, 168–183. [Google Scholar] [CrossRef]
- Lee, W.L.W.; Huang, S.T.; Chang, J.L.; Chen, J.-Y.; Cheng, M.-C. Photodegradation of CV over nanocrystalline bismuth tungstate prepared by hydrothermal synthesis. J. Mol. Catal. A Chem. 2012, 361, 80–90. [Google Scholar] [CrossRef]
- Lin, H.P.; Chen, C.C.; Lee, W.W.; Lai, Y.-Y.; Chen, J.-Y.; Chen, Y.-Q.; Fu, J.-Y. Synthesis of a SrFeO3−x/g-C3N4 heterojunction with improved visible-light photocatalytic activities in chloramphenicol and crystal violet degradation. RSC Adv. 2016, 6, 2323–2336. [Google Scholar] [CrossRef]
- Chou, S.Y.; Chen, C.C.; Dai, Y.M.; Lin, J.-H.; Lee, W.W. Novel synthesis of bismuth oxyiodide/graphitic carbon nitride nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv. 2016, 6, 33478–33491. [Google Scholar] [CrossRef]
- Yang, C.T.; Lee, W.W.; Lin, H.P.; Dai, Y.-M.; Chi, H.-T.; Chen, C.-C. A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: Synthesis, characterization, photocatalytic activity, and mechanism. RSC Adv. 2016, 6, 40664–40675. [Google Scholar] [CrossRef]
- Li, C.; Chen, R.; Zhang, X.; SHU, S.; Xiong, J.; Zheng, Y.; Dong, W. Electrospinning of CeO2–ZnO composite nanofibers and their photocatalytic property. Mater. Lett. 2011, 65, 1327–1330. [Google Scholar] [CrossRef]
- Yang, S.J.; Im, J.H.; Kim, T.; Lee, K.; Park, C.R. MOF-derived ZnO and ZnO@ C composites with high photocatalytic activity and adsorption capacity. J. Hazard. Mater. 2011, 186, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, S.; Wang, Y.; Sekino, T.; Lee, S.W.; Sato, T. Green phosphorescence-assisted degradation of rhodamine B dyes by Ag3PO4. J. Mater. Chem. A 2013, 1, 1123–1126. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Li, B.; Pan, W. Diameter-dependent photocatalytic activity of electrospun TiO2 nanofiber. J. Am. Ceram. Soc. 2010, 93, 2503–2506. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. J. Phys. Chem. 1977, 81, 1484–1488. [Google Scholar] [CrossRef]
- Li, Y.; Fang, X.; Koshizaki, N.; SASAKI, T.; Li, L.; Gao, S.; Shimizu, Y.; Bando, Y.; Golberg, D. Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: Excellent field emitters by parameter optimization. Adv. Funct. Mater. 2009, 19, 2467–2473. [Google Scholar] [CrossRef]
- Collins, J.J.; Bodner, K.; Aylward, L.L.; Wilken, M.; Bodnar, C.M. Mortality rates among trichlorophenol workers with exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Am. J. Epidemiol. 2009, 170, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.M.; Chen, Z.L.; Xu, Z.Z.; Li, X.Y.; Xu, B.B.; Qi, F. Kinetics and mechanism of degradation of p—Chloronitrobenzene in water by ozonation. J. Hazard. Mater. 2008, 152, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mukhopadhyay, M.; Murthy, Z.V.P. Degradation of 4-Chlorophenol in Wastewater by Organic Oxidants. Ind. Eng. Chem. Res. 2010, 49, 3094–3098. [Google Scholar] [CrossRef]
- Hu, M.; Xu, Y. Visible light induced degradation of chlorophenols in the presence of H2O2 and iron substituted polyoxotungstate. Chem. Eng. J. 2014, 246, 299–305. [Google Scholar] [CrossRef]
- Pera-Titus, M.; Garcı́A-Molina, V.; Baños, M.A.; Gimenez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B Environ. 2004, 47, 219–256. [Google Scholar] [CrossRef]
- Yue, L.; Takeshi, S.; Yoshiki, S.; Koshizaki, N. A hierarchically ordered TiO2 hemispherical particle array with hexagonal-non-close-packed tops: Synthesis and stable superhydrophilicity without UV irradiation. Small 2008, 4, 2286–2291. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Jimmy, C.Y.; Zhang, L.; Zheng, Z.; Zhao, J. Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chem. Mater. 2003, 15, 2280–2286. [Google Scholar]
- Zhang, S.; Zhang, C.; Man, Y.; Zhu, Y. Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic propertie. J. Solid State Chem. 2006, 179, 62–69. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Zhou, L.; Xu, H. Bi2WO6 Nano- and Microstructures: Shape Control and Associated Visible-Light-Driven Photocatalytic Activities. Small 2007, 3, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Hijii, S. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi with 6s2 Configuration and d0 Transition Metal Ions. Chem. Lett. 1999, 28, 1103–1104. [Google Scholar] [CrossRef]
- Yu, J.; Kudo, A. Hydrothermal Synthesis and Photocatalytic Property of 2Dimensional Bismuth Molybdate Nanoplates. Chem. Lett. 2005, 34, 1528–1529. [Google Scholar] [CrossRef]
- Fu, H.; Pan, C.; Yao, W.; Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 2005, 109, 22432–22439. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhang, L.; Yao, W.; Zhu, Y. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl. Catal. B Environ. 2006, 66, 100–110. [Google Scholar] [CrossRef]
- Kim, N.; Vannier, R.N.; Grey, C.P. Detecting different oxygen-ion jump pathways in Bi2WO6 with 1-and 2-dimensional 17O MAS NMR spectroscopy. Chem. Mater. 2005, 17, 1952–1958. [Google Scholar] [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Photocatalytic Decomposition of Organic Contaminants by Bi2WO6 under Visible Light Irradiation. Catal. Lett. 2003, 92, 53–56. [Google Scholar] [CrossRef]
- Lu, L.; Kobayashi, A.; Tawa, K.; Ozaki, Y. Silver nanoplates with special shapes: Controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chem. Mater. 2006, 18, 4894–4901. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Chen, Z.; Zhou, L.; Xu, H.; Zhu, W. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem. 2007, 17, 2526–2532. [Google Scholar] [CrossRef]
- Amano, F.; Nogami, K.; Abe, R.; Ohtani, B. Preparation and characterization of bismuth tungstate polycrystalline flake-ball particles for photocatalytic reactions. J. Phys. Chem. C 2008, 112, 9320–9326. [Google Scholar] [CrossRef]
- Wu, J.; Duan, F.; Zheng, Y.; Xie, Y. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J. Phys. Chem. C 2007, 111, 12866–12871. [Google Scholar] [CrossRef]
- Shang, M.; Wang, W.; Xu, H. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth Des. 2008, 9, 991–996. [Google Scholar] [CrossRef]
- Zellmer, L.A.; Smith, D.K.; Nelson, D.; Scheetz, B.E. Synthesis and Unit Cell Parameter Refinement of 25 Tungsten Bronze Ferroelectrics. Powder Diffr. 1988, 3, 222–233. [Google Scholar] [CrossRef]
- Drits, V.; Srodon, J.; Eberl, D.D. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clays Clay Mineral. 1997, 45, 461–475. [Google Scholar] [CrossRef]
- Burton, A.W.; Ong, K.; Rea, T. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 2009, 117, 75–90. [Google Scholar] [CrossRef]
- Margenau, H. Van der Waals Forces. Rev. Mod. Phys. 1939, 11, 1. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.; Cao, L. Influence of W/Bi Mole Ratio on Morphology and Optical Property of Bi2WO6 Microcrystalline. J. Chin. Ceram. Soc. 2012, 40, 916–921. [Google Scholar]
- Obregón, S.; Colón, G. Erbium doped TiO2–Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation. Appl. Catal. B Environ. 2013, s140–141, 299–305. [Google Scholar] [CrossRef]
- Zhou, Y.; Antonova, E.; Lin, Y. In Situ X-ray Absorption Spectroscopy/Energy-Dispersive X-ray Diffraction Studies on the Hydrothermal Formation of Bi2W1–xMoxO6 Nanomaterials. Ber. Der Dtsch. Chem. Ges. 2012, 5, 783–789. [Google Scholar] [CrossRef]
- Gui, M.S.; Zhang, W.D. Preparation and modification of hierarchical nanostructured Bi2WO6 with high visible light-induced photocatalytic activity. Nanotechnology 2011, 22, 265601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Matsumoto, S. Investigations of crystallinity and residual stress of cubic boron nitride films by Raman spectroscopy. Solid State Commun. 2001, 63, 247–250. [Google Scholar] [CrossRef]
- Rats, D.; Bimbault, L.; Vandenbulcke, L.; Herbin, R.; Badawi, K.F. Crystalline quality and residual stresses in diamond layers by Raman and x-ray diffraction analyses. J. Appl. Phys. 1995, 78, 4994–5001. [Google Scholar] [CrossRef]
- Lee, W.W.; Lu, C.S.; Chuang, C.W.; Chen, Y.-J.; Fu, J.-Y.; Siao, C.W.; Chen, C.-C. Synthesis of bismuth oxyiodides and their composites: Characterization, photocatalytic activity, and degradation mechanisms. RSC Adv. 2015, 5, 23450–23463. [Google Scholar] [CrossRef]
- Guo, M. Enhanced photocatalytic activity of S-doped BiVO4 photocatalysts. Rsc Adv. 2015, 5, 58633–58639. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Tang, Z.R.; Xu, Y.-J. Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 2013, 4, 1820–1824. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2 and TEMPO. Angew. Chem. 2008, 120, 9876–9879. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chem. Sci. 2012, 3, 2812–2822. [Google Scholar] [CrossRef]
Sample | Grain Size/nm | Lattice Constant a/Å |
---|---|---|
H0 | 28.3 | 5.45649 |
H5 | 49.0 | 5.45493 |
H10 | 38.3 | 5.45301 |
H15 | 36.0 | 5.45004 |
Sample | BET Surface/m2·g−1 | BJH Pore Volume/cm3·g−1 | BJH Pore Size/nm |
---|---|---|---|
H0 | 102.16 | 0.18 | 5.85 |
H5 | 62.92 | 0.11 | 5.47 |
H10 | 82.33 | 0.17 | 7.08 |
H15 | 65.94 | 0.14 | 7.12 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Guo, M.; Lu, D.; Wang, W.; Fu, Z. Effect of HNO3 Concentration on the Morphologies and Properties of Bi2WO6 Photocatalyst Synthesized by a Hydrothermal Method. Crystals 2016, 6, 75. https://doi.org/10.3390/cryst6070075
Wang W, Guo M, Lu D, Wang W, Fu Z. Effect of HNO3 Concentration on the Morphologies and Properties of Bi2WO6 Photocatalyst Synthesized by a Hydrothermal Method. Crystals. 2016; 6(7):75. https://doi.org/10.3390/cryst6070075
Chicago/Turabian StyleWang, Wenjie, Minna Guo, Dongliang Lu, Weimin Wang, and Zhengyi Fu. 2016. "Effect of HNO3 Concentration on the Morphologies and Properties of Bi2WO6 Photocatalyst Synthesized by a Hydrothermal Method" Crystals 6, no. 7: 75. https://doi.org/10.3390/cryst6070075
APA StyleWang, W., Guo, M., Lu, D., Wang, W., & Fu, Z. (2016). Effect of HNO3 Concentration on the Morphologies and Properties of Bi2WO6 Photocatalyst Synthesized by a Hydrothermal Method. Crystals, 6(7), 75. https://doi.org/10.3390/cryst6070075