A Novel, Simple and Green Way to Fabricate BiVO4 with Excellent Photocatalytic Activity and Its Methylene Blue Decomposition Mechanism
Abstract
:1. Introduction
2. Results
2.1. Phase Structures
2.2. Raman Spectra
2.3. Morphologies of BiVO4 Samples
2.4. UV-vis Diffuse Reflectance Spectra (UV-vis DRS)
2.5. PL Analysis
2.6. Photocatalytic Activity and Recycling Performance
2.7. Trapping Experiments
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Characterization
3.3. Photocatalytic Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chang, X.X.; Wang, T.; Zhang, P.; Zhang, J.J.; Li, A.; Gong, J.L. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.M.; Dai, H.X.; Deng, J.G.; Zang, H.J.; Arandiyan, H.; Xie, S.H.; Yang, H.G. 3DOM BiVO4 supported silver bromide and noble metals: High-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Appl. Catal. B Environ. 2015, 168–169, 274–282. [Google Scholar] [CrossRef]
- Li, H.Y.; Sun, Y.J.; Cai, B.; Gan, S.Y.; Han, D.X.; Niu, L.; Wu, T.S. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B Environ. 2015, 170–171, 206–214. [Google Scholar] [CrossRef]
- Gu, S.N.; Li, W.J.; Wang, F.Z.; Wang, S.Y.; Zhou, H.L.; Li, H.D. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: Effect of heterojunction structure on the enhancement of photocatalytic activity. Appl. Catal. B Environ. 2015, 170–171, 186–194. [Google Scholar] [CrossRef]
- Hernandez, S.; Barbero, G.; Saracco, G.; Alexe-Ionescu, A.L. Considerations on oxygen bubble formation and evolution on BiVO4 porous anodes used in water splitting photoelectrochemical cells. J. Phys. Chem. C 2015, 119, 9916–9925. [Google Scholar] [CrossRef]
- Thalluri, S.M.; Hernández, S.; Bensaid, S.; Saracco, G.; Russo, N. Green-synthesized W- and Mo-doped BiVO4 oriented along the {040} facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B Environ. 2016, 180, 630–636. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, P.F.; Zhao, L.; Wu, J.; Qi, X.M.; Yao, W.F. Photocatalytic behavior of BiVO4 immobilized on silica fiber via a combined alcohol-thermal and carbon nanofibers template route. Catal. Commun. 2014, 49, 29–33. [Google Scholar] [CrossRef]
- Guo, M.N.; Wang, Y.; He, Q.L.; Wang, W.J.; Wang, W.M.; Fu, Z.Y.; Wang, H. Enhanced photocatalytic activity of S-doped BiVO4 photocatalysts. RSC Adv. 2015, 5, 58633–58639. [Google Scholar] [CrossRef]
- Fan, H.M.; Jiang, T.F.; Li, H.Y.; Wang, D.J.; Wang, L.L.; Zhai, J.L.; He, D.Q.; Wang, P.; Xie, T.F. Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C 2012, 116, 2425–2430. [Google Scholar] [CrossRef]
- Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, M.L.; Huang, Y.; Lin, J.M.; Wu, J.H. The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation. J. Alloys Compd. 2010, 496, 287–292. [Google Scholar] [CrossRef]
- Ke, D.N.; Peng, T.Y.; Ma, L.; Cai, P.; Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its Photocatalytic O2 evolution activity under visible light. Inorg. Chem. 2009, 48, 4685–4691. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, W.Z.; Wang, J.; Liang, Y.J. Controlled fabrication and enhanced photocatalystic performance of BiVO4@CeO2 hollow microspheres for the visible-light-driven degradation of rhodamine B. Appl. Surf. Sci. 2015, 349, 529–537. [Google Scholar] [CrossRef]
- Bierlein, J.D.; Sleight, A.W. Ferroelasticity in BiVO4. Solid State Commun. 1975, 16, 69–70. [Google Scholar] [CrossRef]
- Sun, J.X.; Chen, G.; Wu, J.Z.; Dong, H.J.; Xiong, G.H. Bismuth vanadate hollow spheres: Bubble template synthesis and enhanced photocatalytic properties for photodegradation. Appl. Catal. B Environ. 2013, 132–133, 304–314. [Google Scholar] [CrossRef]
- Dong, S.Y.; Feng, J.L.; Li, Y.K.; Hu, L.M.; Liu, M.L.; Wang, Y.F.; Pi, Y.Q.; Sun, J.Y.; Sun, J.H. Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Appl. Catal. B Environ. 2014, 152–153, 413–424. [Google Scholar] [CrossRef]
- Wang, W.Z.; Huang, X.W.; Wu, S.; Zhou, Y.X.; Wang, L.J.; Shi, H.L.; Liang, Y.J.; Zou, B. Preparation of p-n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 2013, 134–135, 293–301. [Google Scholar] [CrossRef]
- Obregón, S.; Colón, G. Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst. Appl. Catal. B Environ. 2014, 152–153, 328–334. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.Z.; Liu, S.W.; Zhang, L.S.; Xu, H.L.; Zhu, W. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A Chem. 2006, 252, 120–124. [Google Scholar] [CrossRef]
- Shan, L.W.; Wang, G.L.; Suriyaprakash, J.; Li, D.; Liu, L.Z.; Dong, L.M. Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol-gel method. J. Alloys Comp. 2015, 636, 131–137. [Google Scholar] [CrossRef]
- Ou, M.; Zhong, Q.; Zhang, S.L. Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol-Gel Sci. Technol. 2014, 72, 443–454. [Google Scholar] [CrossRef]
- Shan, L.W.; Liu, H.G.; Wang, G.L. Preparation of tungsten-doped BiVO4 and enhanced photocatalytic activity. J. Nanopart. Res. 2015, 17, 181. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Y.Q.; Cao, L.X.; Su, G.; Liu, X.Y.; Zhang, L.; Wang, Y.G. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation. J. Hazard. Mater. 2010, 181, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Sun, S.F.; Song, Y.; Yan, X.; Guan, W.S.; Liu, X.L.; Shi, W.D. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. J. Hazard. Mater. 2013, 250–251, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Obregón, S.; Colón, G. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl. Catal. B Environ. 2014, 158–159, 242–249. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Endo, H.; Natori, H.; Nagai, M.; Kobayashi, K. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J. Eur. Ceram. Soc. 2008, 28, 2955–2962. [Google Scholar] [CrossRef]
- Yu, J.Q.; Zhang, Y.; Kudo, A. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. J. Solid State Chem. 2009, 182, 223–228. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.F.; Liu, Z.S.; Dai, C.H.; Song, Z.W.; Sun, Y.; Fang, J.R.; Zhao, J.G. Low-temperature synthesis of BiVO4 crystallites in molten salt medium and their UV-vis absorption. Ceram. Int. 2010, 36, 2073–2077. [Google Scholar] [CrossRef]
- Chung, C.Y.; Lu, C.H. Reverse-microemulsion preparation of visible-light-driven nano-sized BiVO4. J. Alloys Comp. 2010, 502, L1–L5. [Google Scholar] [CrossRef]
- Akihiko, K.; Keiko, O.; Hideki, K. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar]
- Kohtani, S.; Makino, S.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Matsunaga, T.; Nikaido, O.; Hayakawa, K.; Nakagaki, R. Photocatalytic degradation of 4-n-Nonylphenol under irradiation from solar simulator: Comparison between BiVO4 and TiO2 photocatalysts. Chem. Lett. 2002, 31, 600–601. [Google Scholar] [CrossRef]
- Yin, W.Z.; Wang, W.Z.; Zhou, L.; Sun, S.M.; Zhang, L. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 2010, 173, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Kho, Y.K.; Teoh, W.Y.; Iwase, A.; Madler, L.; Kudo, A.; Amal, R. Flame preparation of visible-light-responsive BiVO4 oxygen evolution photocatalysts with subsequent activation via aqueous route. ACS Appl. Mater. Interfaces 2011, 3, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Q.; Kudo, A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater. 2006, 16, 2163–2169. [Google Scholar] [CrossRef]
- Li, G.Q.; Bai, Y.; Zhang, W.F. Difference in valence band top of BiVO4 with different crystal structure. Mater. Chem. Phys. 2012, 136, 930–934. [Google Scholar] [CrossRef]
- Yi, J.; Zhao, Z.Y.; Wang, Y.A.; Zhou, D.C.; Ma, C.S.; Cao, Y.C.; Qiu, J.B. Monophasic zircon-type tetragonal Eu1-xBixVO4 solid-solution: Synthesis, characterization, and optical properties. Mater. Res. Bull. 2014, 57, 306–310. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, X.; Liu, H.J.; Qu, J.H.; Huang, C.P. Synthesis of visible-light sensitive M-BiVO4 (M=Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants. Sep. Purif. Tech. 2011, 77, 275–282. [Google Scholar] [CrossRef]
- Hardcastlet, F.D.; Wachs, I.E. Molecular structure of molybdenum oxide in bismuth molybdates by raman spectroscopy. J. Phys. Chem. 1991, 95, 5031. [Google Scholar]
- Zhou, Y.; Vuille, K.; Heel, A.; Probst, B.; Kontic, R.; Patzke, G.R. An inorganic hydrothermal route to photocatalytically active bismuth vanadate. Appl. Catal. A Gen. 2010, 375, 140–148. [Google Scholar] [CrossRef]
- Kudo, A.; Tsuji, I.; Kato, H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem. Commun. 2002, 1958–1959. [Google Scholar] [CrossRef]
- Chang, W.S.; Li, Y.C.M.; Chung, T.W.; Lin, Y.S.; Huang, C.M. Toluene decomposition using silver vanadate/SBA-15 photocatalysts: DRIFTS study of surface chemistry and recyclability. Appl. Catal. A Gen. 2011, 407, 224–230. [Google Scholar] [CrossRef]
- Pan, G.T.; Huang, C.M.; Peng, P.Y.; Yang, T.C.K. Nano-scaled silver vanadates loaded on mesoporous silica: Characterization and photocatalytic activity. Catal. Today 2011, 164, 377–383. [Google Scholar] [CrossRef]
- Li, G.S.; Zhang, D.Q.; Yu, J.C. Ordered mesoporous BiVO4 through nanocasting: A superior visible light-driven photocatalyst. Chem. Mater. 2008, 20, 3983–3992. [Google Scholar] [CrossRef]
- Yao, M.M.; Liu, M.X.; Gan, L.H.; Zhao, F.Q.; Fan, X.Z.; Zhu, D.Z.; Xu, Z.J.; Hao, Z.X.; Chen, L.W. Monoclinic mesoporous BiVO4: Synthesis and visible-light-driven photocatalytic property. Colloids Surf. A Physicochem. Eng. Aspects 2013, 433, 132–138. [Google Scholar] [CrossRef]
- Lei, L.W.; Jin, H.H.; Zhang, Q.; Xu, J.; Gao, D.; Fu, Z.Y. A novel enhanced visible-light-driven photocatalyst via hybridization of nanosized BiOCl and graphitic C3N4. Dalton Trans. 2015, 44, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Yu, Y.; Liu, J.H.; Ma, P.Y.; Wang, Y.C.; Zhang, F.; Fu, Z.Y. Space-confined growth of Ag3PO4 nanoparticles within WS2 sheets: Ag3PO4/WS2 composites as visible-light-driven photocatalysts for decomposing dyes. J. Mater. Chem. A 2015, 3, 19439–19444. [Google Scholar]
Samples | H0 | H400 | H500 | H600 | H700 | H800 |
---|---|---|---|---|---|---|
Crystalline size (nm) | ― | 55 | 65 | 68 | 69 | 69 |
Bandgap (eV) | 2.68 | 2.41 | 2.38 | 2.36 | 2.34 | 2.35 |
SBET (m2·g−1) | 5.4 | 5.4 | 5.6 | 3.2 | 4.9 | 3.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; He, Q.; Wang, A.; Wang, W.; Fu, Z. A Novel, Simple and Green Way to Fabricate BiVO4 with Excellent Photocatalytic Activity and Its Methylene Blue Decomposition Mechanism. Crystals 2016, 6, 81. https://doi.org/10.3390/cryst6070081
Guo M, He Q, Wang A, Wang W, Fu Z. A Novel, Simple and Green Way to Fabricate BiVO4 with Excellent Photocatalytic Activity and Its Methylene Blue Decomposition Mechanism. Crystals. 2016; 6(7):81. https://doi.org/10.3390/cryst6070081
Chicago/Turabian StyleGuo, Minna, Qianglong He, Aiyang Wang, Weimin Wang, and Zhengyi Fu. 2016. "A Novel, Simple and Green Way to Fabricate BiVO4 with Excellent Photocatalytic Activity and Its Methylene Blue Decomposition Mechanism" Crystals 6, no. 7: 81. https://doi.org/10.3390/cryst6070081
APA StyleGuo, M., He, Q., Wang, A., Wang, W., & Fu, Z. (2016). A Novel, Simple and Green Way to Fabricate BiVO4 with Excellent Photocatalytic Activity and Its Methylene Blue Decomposition Mechanism. Crystals, 6(7), 81. https://doi.org/10.3390/cryst6070081