A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged?
Abstract
:1. Introduction
2. Diffraction Pattern Analysis of QCs
2.1. SAED
2.1.1. 3D QCs
2.1.2. 2D QCs
2.2. CBED
2.2.1. Icosahedral QCs
2.2.2. Decagonal QCs
3. HRTEM Analysis of QCs
3.1. Icosahedral QCs
3.2. Decagonal QCs
4. HAADF-STEM Analysis of QCs
5. Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
QCs | Quasicrystals |
TEM | Transmission electron microscopy |
SAED | Selected area electron diffraction |
CBED | Convergent beam electron diffraction |
HRTEM | High-resolution transmission electron microscopy |
STEM | Scanning transmission electron microscopy |
HAADF | High angle annular dark field |
References
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef]
- Köster, U.; Liu, W.; Liebertz, H.; Michel, M. Mechanical properties of quasicrystalline and crystalline phases in Al–Cu–Fe alloys. J. Non-Cryst. Solids 1993, 153, 446–452. [Google Scholar] [CrossRef]
- Zhou, C.; Cai, F.; Kong, J.; Gong, S.; Xu, H. A study on the tribological properties of low-pressure plasma-sprayed Al–Cu–Fe–Cr quasicrystalline coating on titanium alloy. Surf. Coat. Technol. 2004, 187, 225–229. [Google Scholar] [CrossRef]
- Kang, S.; Dubois, J.; Von Stebut, J. Tribological properties of quasicrystalline coatings. J. Mater. Res. 1993, 8, 2471–2481. [Google Scholar] [CrossRef]
- Pope, A.; Tritt, T.M.; Chernikov, M.; Feuerbacher, M. Thermal and electrical transport properties of the single-phase quasicrystalline material: Al70.8Pd20.9Mn8.3. Appl. Phys. Lett. 1999, 75, 1854–1856. [Google Scholar] [CrossRef]
- Gianno, K.; Sologubenko, A.; Chernikov, M.; Ott, H.; Fisher, I.; Canfield, P. Low-temperature thermal conductivity of a single-grain Y–Mg–Zn icosahedral quasicrystal. Phys. Rev. B 2000, 62, 292–300. [Google Scholar] [CrossRef]
- Honda, Y.; Edagawa, K.; Yoshioka, A.; Hashimoto, T.; Takeuchi, S. Al–Pd–Re icosahedral quasicrystals and their low electrical conductivities. Jpn. J. Appl. Phys. 1994, 33, 4929–4935. [Google Scholar] [CrossRef]
- Rivier, N. Non-stick quasicrystalline coatings. J. Non-Cryst. Solids 1993, 153, 458–462. [Google Scholar] [CrossRef]
- Chernikov, M.; Paschen, S.; Felder, E.; Vorburger, P.; Ruzicka, B.; Degiorgi, L.; Ott, H.; Fisher, I.; Canfield, P. Low-temperature transport, thermal, and optical properties of single-grain quasicrystals of icosahedral phases in the Y–Mg–Zn and Tb–Mg–Zn alloy systems. Phys. Rev. B 2000, 62, 262–272. [Google Scholar] [CrossRef]
- Demange, V.; Milandri, A.; De Weerd, M.; Machizaud, F.; Jeandel, G.; Dubois, J. Optical conductivity of Al–Cr–Fe approximant compounds. Phys. Rev. B 2002, 65, 144205. [Google Scholar] [CrossRef]
- Dubois, J.-M. Properties-and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 2012, 41, 6760–6777. [Google Scholar] [CrossRef] [PubMed]
- Dubois, J.-M. New prospects from potential applications of quasicrystalline materials. Mater. Sci. Eng. A 2000, 294, 4–9. [Google Scholar] [CrossRef]
- Fleury, E.; Lee, S.; Kim, W.; Kim, D. Effects of air plasma spraying parameters on the Al–Cu–Fe quasicrystalline coating layer. J. Non-Cryst. Solids 2000, 278, 194–204. [Google Scholar] [CrossRef]
- Cai, F.; Zhou, C.; Wang, N.; Gong, S.; Xu, H. Wear behavior of low-pressure plasma-sprayed AlCuFe quasicrystalline coating on titanium alloy. Vacuum 2006, 81, 85–90. [Google Scholar] [CrossRef]
- Silva Guedes de Lima, B.A.; Medeiros Gomes, R.; Guedes de Lima, S.J.; Dragoe, D.; Barthes-Labrousse, M.-G.; Kouitat-Njiwa, R.; Dubois, J.-M. Self-lubricating, low-friction, wear-resistant al-based quasicrystalline coatings. Sci. Technol. Adv. Mater. 2016, 17, 71–79. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Yuan, G.; Ding, W. Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg–Zn–Gd alloy processed by cyclic extrusion and compression. J. Alloy. Compd. 2015, 626, 42–48. [Google Scholar] [CrossRef]
- Li, R.; Dong, Z.; Khor, K. Al–Cr–Fe quasicrystals as novel reinforcements in Ti based composites consolidated using high pressure spark plasma sintering. Mater. Des. 2016, 102, 255–263. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, C.B. The transmission electron microscope. In Transmission Electron Microscopy; Springer: New York, NY, USA, 1996; pp. 3–17. [Google Scholar]
- Srivastava, V.; Huttunen-Saarivirta, E.; Cui, C.; Uhlenwinkel, V.; Schulz, A.; Mukhopadhyay, N. Bulk synthesis by spray forming of Al–Cu–Fe and Al–Cu–Fe–Sn alloys containing a quasicrystalline phase. J. Alloy. Compd. 2014, 597, 258–268. [Google Scholar] [CrossRef]
- Alhamidi, A.; Horita, Z. Grain refinement and high strain rate superplasticity in alumunium 2024 alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2015, 622, 139–145. [Google Scholar] [CrossRef]
- Oh, K.; Ahn, S.; Eom, K.; Jung, K.; Kwon, H. Observation of passive films on Fe−20Cr−xNi (x=0, 10, 20wt%) alloys using TEM and Cs-corrected STEM–EELS. Corros. Sci. 2014, 79, 34–40. [Google Scholar] [CrossRef]
- Chen, J.; Zandbergen, H.; Van Dyck, D. Atomic imaging in aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 2004, 98, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, Z.; Weinberger, C.R.; Zhang, Z.; Zhu, T.; Mao, S.X. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 2015, 14, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Kübel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T.-C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11, 378–400. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 2009, 8, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Small, M.W.; Grieshaber, R.V.; Nuzzo, R.G. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 8179–8194. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.; Mouritsen, O.G.; Anderson, R.G. Lipid rafts: At a crossroad between cell biology and physics. Nat. Cell Biol. 2007, 9, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Abe, E. Electron microscopy of quasicrystals—Where are the atoms? Chem. Soc. Rev. 2012, 41, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Z.; Ye, H. In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg–Zn–Y alloys. J. Alloy. Compd. 2015, 621, 179–188. [Google Scholar] [CrossRef]
- Widjaja, E.; Marks, L. Microstructural evolution in Al–Cu–Fe quasicrystalline thin films. Thin Solid Films 2003, 441, 63–71. [Google Scholar] [CrossRef]
- Tsuda, K. Convergent-beam electron diffraction and electron microscopy study of decagonal quasicrystals of Al–Ni–Rh and Al–Ni–Ir. Philos. Mag. Lett. 1996, 73, 271–278. [Google Scholar] [CrossRef]
- Li, R.; Dong, Z.; Murugan, V.K.; Zhang, Z.; Khor, K. Microstructure characterization of Al–Cr–Fe quasicrystals sintered using spark plasma sintering. Mater. Charact. 2015, 110, 264–271. [Google Scholar] [CrossRef]
- Hiraga, K.; Zhang, B.-P.; Hirabayashi, M.; Inoue, A.; Masumoto, T. Highly ordered icosahedral quasicrystal of Al–Cu–Fe alloy studied by electron diffraction and high-resolution electron microscopy. Jpn. J. Appl. Phys. 1988, 27, L951–L953. [Google Scholar] [CrossRef]
- Hiraga, K.; Hirabayashi, M.; Inoue, A.; Masumoto, T. Icosahedral quasicrystals of a melt-quenched Al-Mn alloy observed by high-resolution electron microscopy. Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 1985, 32, 309–314. [Google Scholar]
- Hiraga, K.; Yasuhara, A.; Yamamoto, K.; Yubuta, K. The structure of an Al–Rh–Cu decagonal quasicrystal studied by spherical aberration (Cs)-corrected scanning transmission electron microscopy. Philos. Mag. 2015, 95, 1524–1535. [Google Scholar] [CrossRef]
- Yasuhara, A.; Saito, K.; Hiraga, K. Direct observations of aperiodic arrangements of transition-metal atoms in Al–Co–Ni decagonal quasicrystals by cs-corrected haadf-stem. In Aperiodic Crystals; Springer: Dordrecht, The Netherlands, 2013; pp. 219–224. [Google Scholar]
- Rokhsar, D.S.; Mermin, N.D.; Wright, D.C. Rudimentary quasicrystallography: The icosahedral and decagonal reciprocal lattices. Phys. Rev. B 1987, 35, 5487–5495. [Google Scholar] [CrossRef]
- Ebalard, S.; Spaepen, F. The body-centered-cubic-type icosahedral reciprocal lattice of the Al–Cu–Fe quasi-periodic crystal. J. Mater. Res. 1989, 4, 39–43. [Google Scholar] [CrossRef]
- Ohhashi, S.; Hasegawa, J.; Takeuchi, S.; Tsai, A. Crystal growth of quasicrystal and partial phase diagram involving quasicrystal in the Ag–In–Yb system. Philos. Mag. 2007, 87, 3089–3094. [Google Scholar] [CrossRef]
- Guo, J.; Abe, E.; Tsai, A.-P. Stable icosahedral quasicrystals in the Cd–Mg–RE (RE = rare earth element) systems. Jpn. J. Appl. Phys. 2000, 39, L770–L771. [Google Scholar] [CrossRef]
- Tsai, A.-P.; Inoue, A.; Masumoto, T. A stable quasicrystal in Al–Cu–Fe system. Jpn. J. Appl. Phys. 1987, 26, L1505–L1507. [Google Scholar] [CrossRef]
- Tsai, A.; Inoue, A.; Yokoyama, Y.; Masumoto, T. Stable icosahedral Al–Pd–Mn and Al–Pd–Re alloys. Mater. Trans. JIM 1990, 31, 98–103. [Google Scholar] [CrossRef]
- Niikura, B.A.; Tsai, A.; Inoue, A.; Masumoto, T. Stable Zn-Mg-rare-earth face-centred icosahedral alloys with pentagonal dodecahedral solidification morphology. Philos. Mag. Lett. 1994, 69, 351–355. [Google Scholar] [CrossRef]
- Kuczera, P.; Wolny, J.; Steurer, W. Comparative structural study of decagonal quasicrystals in the systems Al–Cu–Me (Me = Co, Rh, Ir). Acta Crystallogr. Sect. B Struct. Sci. 2012, 68, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, K. Structural study of a superlattice Al–Ni–Ru decagonal quasicrystal using high-resolution electron microscopy and a high-angle annular dark-field technique. Philos. Mag. Lett. 2001, 81, 187–195. [Google Scholar] [CrossRef]
- Taniguchi, S.; Abe, E. Highly-perfect decagonal quasicrystalline Al64Cu22Co14 with non-centrosymmetry. Philos. Mag. 2008, 88, 1949–1958. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, R. The burgers vector of an edge dislocation in an Al70Co15Ni15 decagonal quasicrystal determined by means of convergent-beam electron diffraction. J. Phys. Condens. Matter 1993, 5, L195–L200. [Google Scholar] [CrossRef]
- He, L.X.; Wu, Y.; Kuo, K. Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al65Cu20M15 (M = Mn, Fe, Co or Ni). J. Mater. Sci. Lett. 1988, 7, 1284–1286. [Google Scholar] [CrossRef]
- Pavlyuchkov, D.; Balanetskyy, S.; Kowalski, W.; Surowiec, M.; Grushko, B. Stable decagonal quasicrystals in the Al–Fe–Cr and Al–Fe–Mn alloy systems. J. Alloy. Compd. 2009, 477, L41–L44. [Google Scholar] [CrossRef]
- Sun, W.; Hiraga, K. A new highly ordered Al–Ni–Ru decagonal quasicrystal with 1.6 nm periodicity. Philos. Mag. Lett. 2000, 80, 157–164. [Google Scholar] [CrossRef]
- Tsai, A.; Inoue, A.; Masumoto, T. Stable decagonal quasicrystals with a periodicity of 1.6 nm in Al–Pd–(Fe, Ru or Os) alloys. Philos. Mag. Lett. 1991, 64, 163–167. [Google Scholar] [CrossRef]
- Ranganathan, S.; Chattopadhyay, K.; Singh, A.; Kelton, K. Decagonal quasicrystals. Prog. Mater. Sci. 1997, 41, 195–240. [Google Scholar] [CrossRef]
- Steurer, W.; Deloudi, S. Decagonal quasicrystals—what has been achieved? C. R. Phys. 2014, 15, 40–47. [Google Scholar] [CrossRef]
- Ritsch, S. Highly perfect decagonal Al–Co–Ni quasicrystals. Philos. Mag. Lett. 1996, 74, 99–106. [Google Scholar] [CrossRef]
- Li, X. Structure ofthe Al-Rh-Cu decagonal quasicrystal studied by high-resolution electron microscopy. Philos. Mag. Lett. 1996, 74, 247–252. [Google Scholar] [CrossRef]
- Abe, E.; Tsai, A. Structure of a metastable Al3Ni decagonal quasicrystal: Comparison with a highly perfect Al72Ni20Co8. J. Alloy. Compd. 2002, 342, 96–100. [Google Scholar] [CrossRef]
- Beeli, C. High-resolution electron microscopy of quasicrystals. Mater. Sci. Eng. A 2000, 294, 23–28. [Google Scholar] [CrossRef]
- Edagawa, K.; Ichihara, M.; Suzuki, K.; Takeuchi, S. New type of decagonal quasicrystal with superlattice order in Al–Ni–Co alloy. Philos. Mag. Lett. 1992, 66, 19–25. [Google Scholar] [CrossRef]
- Saito, K.; Ohsuna, T.; Sun, W.; Hiraga, K. Reversible phase changes of Ni-rich Al–Co–Ni decagonal quasicrystals studied by means of transmission electron microscopy and thermal analysis. J. Alloy. Compd. 2004, 372, 169–175. [Google Scholar] [CrossRef]
- Pramanick, A.; Mandal, R.; Sastry, G. Effect of composition on the streaking and diffuse intensity in decagonal phase in Al70−XCo15CuX+YNi15−Y system. Mater. Sci. Eng. A 2000, 294, 173–177. [Google Scholar] [CrossRef]
- Saito, M.; Tanaka, M.; Tsai, A.P.; Inoue, A.; Masumoto, T. Space group determination of decagonal quasicrystals of an Al70Ni15Fe15 alloy using convergent-beam electron diffraction. Jpn. J. Appl. Phys. 1992, 31, L109–L112. [Google Scholar] [CrossRef]
- Hiraga, K.; Lincoln, F.J.; Sun, W. Structure and structural change of Al–Ni–Co decagonal quasicrystal by high-resolution electron microscopy. Mater. Trans. JIM 1991, 32, 308–314. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.; Kuo, K. Two-dimensional quasicrystal with eightfold rotational symmetry. Phys. Rev. Lett. 1987, 59, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Ye, H.; Kuo, K. A new octagonal quasicrystal and related crystalline phases in rapidly solidified Mn4Si. Phys. Status Solidi A 1988, 107, 511–519. [Google Scholar] [CrossRef]
- Wang, N.; Fung, K.K.; Kuo, K. Symmetry study of the Mn–Si–Al octagonal quasicrystal by convergent beam electron diffraction. Appl. Phys. Lett. 1988, 52, 2120–2121. [Google Scholar] [CrossRef]
- Jiang, J.; Fung, K.; Kuo, K. Discommensurate microstructures in phason-strained octagonal quasicrystal phases of Mo–Cr–Ni. Phys. Rev. Lett. 1992, 68, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, D.; Kuo, K. New type of two-dimensional quasicrystal with twelvefold rotational symmetry. Phys. Rev. Lett. 1988, 60, 1645–1648. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.; Krumeich, F.; Harbrecht, B. A dodecagonal quasicrystalline chalcogenide. Angew. Chem. Int. Ed. 1998, 37, 1383–1386. [Google Scholar] [CrossRef]
- Tanaka, M. Characterization of icosahedral quasicrystals by convergent-beam electron diffraction ((B) quasicrystals). Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 1991, 36, 159–170. [Google Scholar]
- Tanaka, M. Convergent-beam electron diffraction. Acta Crystallogr. Sect. A Found. Crystallogr. 1994, 50, 261–286. [Google Scholar] [CrossRef]
- Tanaka, M.; Terauchi, M.; Kaneyama, T. Convergent-Beam Electron Diffraction II; Jeol: Tokyo, Japan, 1988; Volume 2. [Google Scholar]
- Bendersky, L.; Kaufman, M. Determination of the point group of the icosahedral phase in an Al–Mn–Si alloy using convergent-beam electron diffraction. Philos. Mag. B 1986, 53, L75–L80. [Google Scholar] [CrossRef]
- Cassada, W.; Shiflet, G.; Poon, S. Formation of an icosahedral phase by solid-state reaction. Phys. Rev. Lett. 1986, 56, 2276–2279. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Doty, H.; Kaufman, M. Crystallographic studies on the iron-containing intermetallic phases in the 319-type aluminium casting alloys. Philos. Mag. 2008, 88, 607–619. [Google Scholar] [CrossRef]
- Saitoh, K.; Tsuda, K.; Tanaka, M.; Tsai, A.; Inoue, A.; Masumoto, T. Convergent-beam electron diffraction and electron microscope study on decagonal quasicrystals of Al–Cu–Co and Al–Co alloys. Mater. Sci. Eng. A 1994, 181, 805–810. [Google Scholar] [CrossRef]
- Saitoh, K.; Tanaka, M.; Tsai, P. Structural study of an Al73Ni22Fe5 decagonal quasicrystal by high-angle annular dark-field scanning transmission electron microscopy. J. Electron Microsc. 2001, 50, 197–203. [Google Scholar] [CrossRef]
- Tsuda, K.; Nishida, Y.; Saitoh, K.; Tanaka, M.; Tsai, A.; Inoue, A.; Masumoto, T. Structure of Al–Ni–Co decagonal quasicrystals. Philos. Mag. A 1996, 74, 697–708. [Google Scholar] [CrossRef]
- Tanaka, M.; Tsuda, K.; Terauchi, M.; Fujiwara, A.; Tsai, A.; Inoue, A.; Masumoto, T. Electron diffraction and electron microscope study on decagonal quasicrystals on Al–Ni–Fe alloys. J. Non-Cryst. Solids 1993, 153, 98–102. [Google Scholar] [CrossRef]
- Saitoh, K.; Tsuda, K.; Tanaka, M.; Tsai, A.; Inoue, A.; Masumoto, T. Electron microscope study of the symmetry of the basic atom cluster and a structural change of decagonal quasicrystals of Al–Cu–Co alloys. Philos. Mag. A 1996, 73, 387–398. [Google Scholar] [CrossRef]
- Stadnik, Z.M. Physical Properties of Quasicrystals; Springer Science & Business Media: Berlin, Germany, 2012; Volume 126. [Google Scholar]
- Hiraga, K.; Hirabayashi, M.; Inoue, A.; Masumoto, T. High-resolution electron microscopy of Al–Mn–Si icosahedral and Al–Mn decagonal quasicrystals. J. Microsc. 1987, 146, 245–260. [Google Scholar] [CrossRef]
- Tsai, A.-P. Discovery of stable icosahedral quasicrystals: Progress in understanding structure and properties. Chem. Soc. Rev. 2013, 42, 5352–5365. [Google Scholar] [CrossRef] [PubMed]
- Zupanič, F.; Bončina, T.; Križman, A.; Grogger, W.; Gspan, C.; Markoli, B.; Spaić, S. Quasicrystalline phase in melt-spun Al–Mn–Be ribbons. J. Alloy. Compd. 2008, 452, 343–347. [Google Scholar] [CrossRef]
- Abe, E.; Yan, Y.; Pennycook, S.J. Quasicrystals as cluster aggregates. Nat. Mater. 2004, 3, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Penrose, R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 1974, 10, 266–271. [Google Scholar]
- Bursill, L.; Lin, P.J. Penrose tiling observed in a quasi-crystal. Nature 1985, 316, 50–51. [Google Scholar] [CrossRef]
- Levine, D.; Steinhardt, P.J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 1984, 53, 2477–2480. [Google Scholar] [CrossRef]
- Burkov, S. Structure model of the Al–Cu–Co decagonal quasicrystal. Phys. Rev. Lett. 1991, 67, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Burkov, S.; He, Y.; Poon, S.; Shiflet, G. High-resolution electron-microscopy study and structure modeling of the stable decagonal Al-Cu-Co quasicrystal. Phys. Rev. Lett. 1990, 65, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, N.; Sastry, G.; Weatherly, G. Electron microscopy analysis of decagonal quasicrystals in the Al–Cu–Co–Si system. Philos. Mag. A 2000, 80, 1795–1809. [Google Scholar] [CrossRef]
- Abe, E.; Saitoh, K.; Takakura, H.; Tsai, A.; Steinhardt, P.; Jeong, H.-C. Quasi-unit-cell model for an Al–Ni–Co ideal quasicrystal based on clusters with broken tenfold symmetry. Phys. Rev. Lett. 2000, 84, 4609–4612. [Google Scholar] [CrossRef] [PubMed]
- Gummelt, P. Construction of penrose tilings by a single aperiodic protoset. In Proceedings of the 5th International Conference on Quasicrystals, Avignon, France, 22–26 May 1995; pp. 84–87.
- Steinhardt, P.J.; Jeong, H.-C.; Saitoh, K.; Tanaka, M.; Abe, E.; Tsai, A. Experimental verification of the quasi-unit-cell model of quasicrystal structure. Nature 1998, 396, 55–57. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Jeong, H.-C. A simpler approach to penrose tiling with implications for quasicrystal formation. Nature 1996, 382, 431–432. [Google Scholar] [CrossRef]
- Yan, Y.; Pennycook, S.J. Chemical ordering in Al72Ni20Co8 decagonal quasicrystals. Phys. Rev. Lett. 2001, 86, 1542–1545. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Pennycook, S.J. Alloys: Atomic structure of the quasicrystal Al72Ni20Co8. Nature 2000, 403, 266–267. [Google Scholar] [CrossRef] [PubMed]
- Mihalkovič, M.; Al-Lehyani, I.; Cockayne, E.; Henley, C.; Moghadam, N.; Moriarty, J.; Wang, Y.; Widom, M. Total-energy-based prediction of a quasicrystal structure. Phys. Rev. B 2002, 65, 104205. [Google Scholar] [CrossRef]
- Seki, T.; Abe, E. Local cluster symmetry of a highly ordered quasicrystalline Al58Cu26Ir16 extracted through multivariate analysis of STEM images. Microscopy 2015, 64, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Abe, E.; Pennycook, S.; Tsai, A. Direct observation of a local thermal vibration anomaly in a quasicrystal. Nature 2003, 421, 347–350. [Google Scholar] [CrossRef] [PubMed]
- De Boissieu, M. Atomic structure of quasicrystals. Struct. Chem. 2012, 23, 965–976. [Google Scholar] [CrossRef]
- Yamamoto, A.; Takakura, H.; Tsai, A.P. Six-dimensional model of icosahedral Al–Pd–Mn quasicrystals. Phys. Rev. B 2003, 68. [Google Scholar] [CrossRef]
- Yamamoto, A.; Takakura, H.; Abe, E. Five-dimensional model of the S1-superstructure phase in Al−Ni−Co quasicrystals. Phys. Rev. B 2005, 72. [Google Scholar] [CrossRef]
- Yamamoto, A.; Weber, S. Five-dimensional superstructure model of decagonal Al–Ni–Co quasicrystals. Phys. Rev. Lett. 1997, 78, 4430–4433. [Google Scholar] [CrossRef]
- Mihalkovič, M.; Zhu, W.-J.; Henley, C.; Oxborrow, M. Icosahedral quasicrystal decoration models. I. Geometrical principles. Phys. Rev. B 1996, 53, 9002–9020. [Google Scholar] [CrossRef]
- Fujita, N.; Takano, H.; Yamamoto, A.; Tsai, A.-P. Cluster-packing geometry for Al-based f-type icosahedral alloys. Acta Crystallogr. Sect. A Found. Crystallogr. 2013, 69, 322–340. [Google Scholar] [CrossRef]
- Takakura, H.; Gómez, C.P.; Yamamoto, A.; De Boissieu, M.; Tsai, A.P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nat. Mater. 2007, 6, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Meng, Y.S.; Zhu, Y. Frontiers of in situ electron microscopy. MRS Bull. 2015, 40, 12–18. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, Z.; Dong, Z.; Khor, K.A. A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged? Crystals 2016, 6, 105. https://doi.org/10.3390/cryst6090105
Li R, Li Z, Dong Z, Khor KA. A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged? Crystals. 2016; 6(9):105. https://doi.org/10.3390/cryst6090105
Chicago/Turabian StyleLi, Ruitao, Zhong Li, Zhili Dong, and Khiam Aik Khor. 2016. "A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged?" Crystals 6, no. 9: 105. https://doi.org/10.3390/cryst6090105
APA StyleLi, R., Li, Z., Dong, Z., & Khor, K. A. (2016). A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged? Crystals, 6(9), 105. https://doi.org/10.3390/cryst6090105