Back to the Structural and Dynamical Properties of Neutral-Ionic Phase Transitions
Abstract
:1. Introduction
- The concomitant totally symmetric charge transfer instability with the symmetry breaking resulting from (anti)ferroelectric ordering leads to an unusual and rich phase transition phenomenology [8];
- The high degree of covalency, with respect to conventional ferroelectric materials, makes these mixed stack charge transfer crystals highly electronically susceptible, and so drives the most spectacular manifestation of electronic ferroelectricity [9];
- The strong 1D fluctuations in the neutral phase [10,11] enhances the effect of electron-phonon interaction. It may give rise to a pronounced Peierls-type anomaly in lattice phonon spectrum and/or the generation of unconventional non-linear excitations along DA stacks, with a puzzling interplay between quantum and thermal effects;
- The groundbreaking observation of the photo-induced N-I instability [12] has opened a way for directing the functionality of these materials by light or electric field pulse on ultra-short time scale.
2. Concomitant Totally Symmetric Ionicity Change and (anti)Ferroelectric Symmetry Breaking
2.1. Symmetry Analysis and Structural Changes of TTF-CA
2.2. Landau Description of the N-I Phase Transition in TTF-CA
2.3. Other Examples of N-I in Different Mixed Stacks Charge Transfer Crystals
3. Electronic Ferroelectricity, Fluctuations and Self-Ordering of a Set of DA Chains
3.1. Electronic Ferroelectricity of TTF-CA
3.2. One-Dimensional Correlated Fluctuations
3.3. Revisiting the Phase Diagram of TTF-CA and Observation of Electronic Ferroelectric Fluctuations
4. Concluding Remarks and Perspectives
4.1. Lessons from Main Structural and Dynamical Features
- The analogy between the TTF-CA phase diagram and the gas-liquid-solid one is particularly illustrative of the interplay between the charge transfer instability and the ferroelectric ordering. This places the N-I transition in an exceptional situation in the universal field of phase transitions as it combines on an equal footing isostructural transformation and symmetry breaking. On the one hand, it gives the possibility to investigate a new kind of isostructural Mott transition beyond the conventional insulator-metal Mott transition. This drives new emergent properties which remain poorly explored. The behavior under pressure is particularly exciting when the charge transfer changes smoothly above a critical point. On the other hand, the ferroelectric ordering differs on many points from usual mechanism in conventional ferroelectrics due to its strong coupling to the charge transfer instability. The NI systems occupy a unique place in the emerging field of organic ferroelectricity [115,116,117,118].
- The Landau approach, based on two strong scientific foundations, symmetry and thermodynamics, provides a universal frame to describe the N-I transition, which is unambiguous with respect to the usual reference to vaguely defined quantities such as ionicity and dimerization. The extended concept of order parameter to an isostructural situation is particularly useful. It allows to define a 2D order parameter space, involving both the (anti)ferroelectric symmetry breaking one and the totally symmetric one. This review also underlines the fact that, hidden in the order parameter description, many electronic and structural changes are involved. We stress that they may be decomposed between a part associated to the symmetry breaking and another part totally symmetric. Some Landau expansion, based on the coupling between two coupled order parameters, has been proposed and must be further explored.
- The phase transitions really take place at 3D. Therefore, the role of cooperative inter-stack interactions is essential to drive a new long range order resulting from both (anti)ferroelectric ordering and isostructural charge transfer instability. The large difference in the nature of phase transition between charge transfer crystals, with different structural array, is a good illustration of the role of inter-stack interactions. The electronic charge distribution in the unit cell is complex, but it is clear that it amplifies the inter-stack electrostatic interactions with respect to point charge models to give a significant contribution to the Madelung energy, but also to a polarization energy gain. Moreover, in connection with the volume jump at the N-I transition, occurring essentially from contraction along directions perpendicular to the stacking axis, it is also important to better explore the role of elastic inter-stack interactions, in particular their coupling with the two order parameters.
- Despite the essential role of 3D interactions in the thermodynamics of N-I phase transitions, strongly 1D dynamical fluctuations arise along the stacks in the N phase. This 1D feature is even more striking than in the well-known examples of so-called 1D molecular conductors. Therefore, we can consider these charge transfer crystalline systems as a set of 1D fluctuating objects cooperatively coupled at 3D. This is somehow an extension of the spin crossover situation where the coupled objects are actually 0D (molecule). The NI situation is obviously more complex. The 1D character enhances the electron-phonon effects along a charge transfer stack, which manifests in two limit physical pictures, the Peierls soft mode and the unconventional domain wall excitation. The debate is still open between these two limit physical pictures. If some consensus on the role of domain wall dynamics in the properties under pressure, this is not the case at ambient pressure. An intermediate situation may be also considered, with a complex spectral response combining the incomplete softening of the polar mode with a diverging slowing down of a central relaxation-type response. The energy analysis of the diffuse scattering would be important to clarify the situation.
- The high degree of covalency along stacks causes these charge transfer chains highly electrically susceptible and so drives spectacular properties. In particular, the NI system may be considered as a paradigm of electronic ferroelectricity. The N phase is a band insulator (nonmagnetic) and the I phase a Mott insulator (magnetic) and this introduce a new situation in Mott physics. It manifests by the change of sign of the dynamical effective charge at the NI transition, i.e., the anion transports a positive dynamical charge, and cation a negative. This was spectacularly evidenced in the ferroelectric phase. In addition, we report the observation of a maximum in the dielectric response of the paraelectric state when the NI borderline is crossed. At sufficient temperature, the thermal activation of fluctuating NI domain walls becomes significant. The subsequent thermal charge fluctuations are, as the quantum one, maximum at qc. The interplay between quantum and thermal dynamics is still poorly understood. The situation is particularly complex but opens new opportunities to understand the emergent physical properties originating from the dynamics of these unconventional excitations in 1D electron-lattice-spin systems [119], including topological solitons in I state, in particular when quantum phenomena emerge near a ferroelectric critical point [120].
4.2. New Light from Ultrafast Photo-Induced Phenomena
- The transient I-to-N transformation has been demonstrated to present some remarkable behavior on short time scale, evidenced through numerous pump-probe investigations in the visible or near-infrared spectral range [128,129,130,131,132,133,134,135], and also by time-resolved vibrational spectroscopy [136,137]. Thus, non-linear response have been observed, since at 2 ps the number of transformed DA pairs from I to N is found proportional to the number of absorbed photons, while at 500 ps it decays below a threshold value, and in contrary self-multiplies above inducing a macroscopic transformation [130,132]. In addition, in the initial linear regime the number of pairs is more than one per photon, rather estimated in the range of tens. This is explained by the induced generation of a local self-trapped N nanodomain along a stack during a first step after the absorption of one photon, in agreement with the domain-wall picture. Furthermore, the intensity of the second harmonic generation, which characterizes the ferroelectric order, decreases more rapidly and disappears before the change of reflectivity characteristic of the establishment of the N state [99]. In other words, the ferroelectric long range order is destroyed by moving NI domain-walls and also soliton-antisoliton pairs along stacks, before the isostructural transformation toward the N phase. This physical picture of a melting of the ordered structure preceding the disappearance of I species is consistent with the previous discussions on the phase diagram and it constitutes the dynamic counterpart of the static behavior.
- Many dynamical structural information can be directly probed by time-resolved X-ray or electron scattering experiments. Different X-ray diffraction and diffuse scattering investigations have been performed in TTF-CA [138,139,140,141,142,143]. One key feature is the observation of a large evolution of the intensity of some Bragg peaks in the range of 500 ps time scale after a 800 nm laser pulse irradiation of the N phase both at ESRF [138,139] and at Photon Factory [141]. In addition, some threshold effect seems to occur, but this is not again definitively established. Since the penetration depth at this wavelength is estimated to be about 2.8 µm [128], the process takes place on the slow acoustic time scale defined by the ratio between this length and the speed of sound. The recent observation of elastically driven cooperative response in a spin-crossover system is instructive [144]. It will be important to explore this point and to particularly the role of cooperative inter-stack elastic interactions. With the advent of x-ray fee electron lasers new opportunities will be gained to understand the interrelation between nano-scale switching at ultra-short time scale and these process on longer spatial and temporal scales.
- Coherent oscillations were also observed in the ultrafast optical reflectivity measurements mentioned above. Thanks to a time resolution pushed down to about 20 fs, both a low-frequency lattice mode and different intra-molecular vibrations are generated after the light pulse irradiation of the N phase [135]. This shows that, as at thermal equilibrium, the photo-induced state is stabilized by triggering some deformations of the soft D and A molecules. The frequency of the lattice mode is observed in the range 53–55 cm−1 both above and below TNI [130,132,133,134,135]. It was attributed to the dimerization intermolecular vibrations. This mode being polar this observation in N phase is a-priori surprising since the reflectivity is sensitive. However, we can argue that the self-trapping of I nanodomains, during the dimerization process, may generate a local symmetry breaking, which opens a channel to probe the induced electronic change of molecular state. The most surprising feature remains that the generated lattice mode keeps the same frequency in each state and is temperature-independent, even if this dynamic picture takes place on the potential energy surface of the electronically excited state. Moreover, some new features have been recently reported with the response of the ground state of the N phase to a strong THz electric-field pulse [90]. Large induced macroscopic polarization is observed thanks to a second harmonic generation probe, with an oscillatory part. Near TNI, the oscillation frequency is just below 20 cm–1, which becomes close to the one reported in the infrared study at thermal equilibrium [96], and it increases with temperature increasing. The result was interpreted in terms of domain-wall dynamics, and not in terms of the Bu polar soft mode. In addition, another coherent oscillation, with a frequency of 54 cm–1, is observed by probing the optical reflectivity. All these oscillatory features are very rich but remain intriguing. As at thermal equilibrium, the situation is probably complex and requires us to go beyond the limit cases of dynamical pictures.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Phenomenological Landau Theory
References
- Torrance, J.B.; Vazquez, J.E.; Mayerle, J.J.; Lee, V.Y. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 1981, 46, 253–257. [Google Scholar] [CrossRef]
- Saito, G.; Yoshida, Y. Development of conductive molecular assemblies: Organic metals, superconductors, and exotic functional materials. Bull. Chem. Soc. Jpn. 2007, 80, 1–137. [Google Scholar] [CrossRef]
- Torrance, J.B. An overview of organics solids: The relation between their electronic, optical, magnetic and structural properties. In Low-Dimensional Conductors and Superconductors; Jerome, D., Ed.; Springer: New York, NY, USA, 1987; pp. 113–133. [Google Scholar]
- Torrance, J.B.; Girlando, A.; Mayerle, J.J.; Crowley, J.I.; Lee, V.Y.; Batail, P.; LaPlaca, S.J. Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 1981, 47, 1747–1750. [Google Scholar] [CrossRef]
- Jacobsen, C.S.; Torrance, J.B. Behavior of charge-transfer absorption upon passing through the neutral-ionic phase transition. J. Chem. Phys. 1983, 79, 1075–1085. [Google Scholar] [CrossRef] [Green Version]
- Buron-Le Cointe, M.; Lemée-Cailleau, M.H.; Cailleau, H.; Toudic, B.; Moréac, A.; Moussa, M.; Ayache, C.; Karl, N. Thermal hysteresis and mesoscopic phase coexistence around the neutral-ionic phase transition in TTF-CA and TMB-TCNQ. Phys. Rev. B 2003, 68, 064103. [Google Scholar] [CrossRef]
- Le Cointe, M.; Lemée-Cailleau, M.H.; Cailleau, H.; Toudic, B.; Toupet, L.; Heger, G.; Moussa, F.; Schweiss, P.; Kraft, K.H.; Karl, N. Symmetry breaking and structural changes at the neutral-to-ionic transition tetrathiafulvalene-p-chloranil. Phys. Rev. B 1995, 51, 3374–3386. [Google Scholar] [CrossRef]
- Lemée-Cailleau, M.H.; Le Cointe, M.; Cailleau, H.; Luty, T.; Moussa, F.; Roos, J.; Brinkmann, D.; Toudic, B.; Ayache, C.; Karl, N. Thermodynamics of the neutral-to-ionic transition as condensation and crystallization of charge-transfer excitations. Phys. Rev. Lett. 1997, 79, 1690–1693. [Google Scholar] [CrossRef]
- Kobayashi, K.; Horiuchi, S.; Kumai, R.; Kagawa, F.; Murakami, Y.; Tokura, Y. Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. Phys. Rev. Lett. 2012, 108, 237601. [Google Scholar] [CrossRef] [PubMed]
- Collet, E.; Lemée-Cailleau, M.H.; Buron-Le Cointe, M.; Cailleau, H.; Ravy, S.; Luty, T.; Bérar, J.F.; Czarnecki, P.; Karl, N. Direct evidence of lattice-relaxed charge transfer exciton strings. Europhys. Lett. 2002, 57, 67–73. [Google Scholar] [CrossRef]
- Buron-Le Cointe, M.; Lemée-Cailleau, M.H.; Cailleau, H.; Ravy, S.; Bérar, J.F.; Rouzière, S.; Elkaïm, E.; Collet, E. One-dimensional fluctuating nanodomains in the charge-transfer molecular system TTF-CA and their first-order crystallisation. Phys. Rev. Lett. 2006, 96, 205503. [Google Scholar] [CrossRef] [PubMed]
- Koshihara, S.; Tokura, Y.; Mitani, T.; Saito, G.; Koda, T. Photoinduced valence instability in the organic molecular compound tetrathiafulvalene-p-chloranil (TTF-CA). Phys. Rev. B 1990, 42, 6853–6856. [Google Scholar] [CrossRef]
- Strukov, B.A.; Levanyuk, A.P. Ferroelectric Phenomena in Crystals: Physical Foundations; Springer: Berlin/Heidelberg, Germany; NewYork, NY, USA, 1998. [Google Scholar]
- D’Avino, G.; Painelli, A.; Soos, Z.G. Modelling the neutral-ionic transition with correlated electrons coupled to soft lattices and molecules. Crystals 2017, 7, 144. [Google Scholar] [CrossRef]
- Oison, V.; Katan, C.; Rabiller, P.; Souhassou, M.; Koenig, C. Neutral-ionic phase transition: A thorough ab-initio study of TTF-CA. Phys. Rev. B 2003, 67, 035120. [Google Scholar] [CrossRef]
- Delchiaro, F.; Girlando, A.; Painelli, A.; Bandyopadhyay, A.; Patti, S.K.; D’Avino, G. Towards first-principles prediction of valence instabilities in mixed stack charge-transfer crystals. Phys. Rev. B 2017, 95, 155125. [Google Scholar] [CrossRef]
- Tokura, Y.; Koda, T.; Mitani, T.; Saito, G. Neutral-to-ionic transition in tetrathiafulvalene-p-chloranil as investigated by optical reflection spectra. Solid State Commun. 1982, 43, 757–760. [Google Scholar] [CrossRef]
- Girlando, A.; Marzola, F.; Pecile, C.; Torrance, J.B. Vibrational spectroscopy of mixed stack organic semiconductors: Neutral and ionic phases of tetrathiafulvalene-chloranil (TTF-CA) charge transfer complex. J. Chem. Phys. 1983, 79, 1075–1085. [Google Scholar] [CrossRef]
- Dressel, M.; Peterseim, T. Infrared investigations of the neutral-ionic phase transition in TTF-CA and its dynamics. Crystals 2017, 7, 17. [Google Scholar] [CrossRef]
- Masino, M.; Castagnetti, N.; Girlando, A. Phenomenology of the neutral-ionic valence instability in mixed stack charge-transfer crystals. Crystals 2017, 7, 108. [Google Scholar] [CrossRef]
- Katan, C. First-principles study of the structures and vibrational frequencies for tetrathiafulfalene TTF and TTF-d4 in different oxidation states. J. Phys. Chem. A 1999, 103, 1407–1413. [Google Scholar] [CrossRef]
- Resta, R. Charge states in Transition. Nature 2008, 453, 735. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.; Dahaoui, S.; Katan, C.; Souhassou, M.; Lecomte, C. On the accurate estimation of intermolecular interactions and charge transfer: The case of TT-CA. Faraday Discuss. 2007, 135, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Gourdji, M.; Guibé, L.; Peneau, A.; Gallier, J.; Toudic, B.; Cailleau, H. Cl-35 NQR observation of the neutral-to-ionic phase-transition in tetrathiafulvalene-para-chloranil. Solid State Commun. 1991, 77, 609–612. [Google Scholar] [CrossRef]
- Gallier, J.; Toudic, B.; Delugeard, Y.; Cailleau, H.; Gourdji, M.; Peneau, A.; Guibé, L. Chlorine-nuclear-quadrupole-resonance study of the neutral-to-ionic transition in tetrathiafulvalene-chloranil. Phys. Rev. B 1993, 47, 11688–11695. [Google Scholar] [CrossRef]
- Le Cointe, M.; Gallier, J.; Cailleau, H.; Gourdji, M.; Peneau, A.; Guibé, L. 35Cl NQR study on TTF-CA crystals: Symmetry lowering and hysteresis at the neutral-to-ionic transition. Solid State Commun. 1995, 94, 455–459. [Google Scholar] [CrossRef]
- Metzger, R.M.; Torrance, J.B. Role of the Madelung energy at the neutral-ionic phase transition of tetrathiafulvalene chloranil. J. Am. Chem. Soc. 1985, 107, 117–121. [Google Scholar] [CrossRef]
- Kawamoto, T.; Izuka-Sakano, T.; Shimoi, Y.; Abe, S. Crucial effects of intramolecular charge distribution on the neutral-ionic transition of tetrathiafulvalene-p-chloranil. Phys. Rev. B 2001, 64, 205107. [Google Scholar] [CrossRef]
- Bartholin, H.; Baudour, J.L.; Breandon, C.; Tchapoutian, R.; Cailleau, H.; Perrin, D. A possible devil’s staircase in TTF-chloranil at the neutral-ionic transition observed by electric conductivity measurements. Solid State Commun. 1987, 63, 223–225. [Google Scholar] [CrossRef]
- Ayache, C.; Torrance, J.B. Multiple specific heat anomalies at the neutral-ionic phase transition in TTF-chloranil. Solid State Commun. 1983, 47, 789–793. [Google Scholar] [CrossRef]
- Kishida, H.; Takamatsu, H.; Fujinuma, K.; Okamoto, H. Ferroelectric nature and real-space observations of domain motions in the organic charge-transfer compound tetrathiafulvalene-p-chloranil. Phys. Rev. B 2009, 80, 205201. [Google Scholar] [CrossRef]
- Halcrow, M.A. Spin-Crossover Materials: Properties and Applications; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Kuznetsov, A.Y.; Dimitriev, V.P.; Bandilet, O.I.; Weber, H.P. High-temperature fcc phase of Pr: Negative thermal expansion and intermediate valence state. Phys. Rev. B 2003, 68, 064109. [Google Scholar] [CrossRef]
- Avignon, M.; Balseiro, C.A.; Protteo, C.R.; Alascio, B. Neutral-ionic transition and dimerization in organic mixed-stack compounds. Phys. Rev. B 1986, 33, 205–209. [Google Scholar] [CrossRef]
- Chernyshov, D.; Bürgi, H.B.; Hostettler, M.; Törnroos, K.W. Landau theory for spin transition and ordering phenomena in Fe(II) compounds. Phys. Rev. B 2004, 70, 094116. [Google Scholar] [CrossRef]
- Iizuka-Sakano, T.; Toyozawa, Y. The role of long range Coulomb interaction in the neutral-to-ionic transition of quasi-one-dimensional charge transfer compounds. J. Phys. Soc. Jpn. 1996, 65, 671–674. [Google Scholar] [CrossRef]
- Soos, Z.G.; Painelli, A. Metastable domains and potential energy surfaces in organic charge-transfer salts with neutral-ionic phase transitions. Phys. Rev. B 2007, 75, 155119. [Google Scholar] [CrossRef]
- Yi, T.; Kirova, N.; Brazovskii, S. Dynamical patterns of phase transformations from self-trapping of quantum excitons. Phys. B 2015, 460, 73–78. [Google Scholar] [CrossRef]
- Rushchanskii, K.Z.; Vysochanskii, Y.M.; Strauch, D. Ferroelectricity, nonlinear dynamics, and relaxation effects in monoclinic Sn2P2S6. Phys. Rev. Lett. 2007, 99, 207601. [Google Scholar] [CrossRef] [PubMed]
- Luty, T. Neutral-to-Ionic Transformation as Condensation and Solidification of Charge-Transfer Excitations. Relaxations of Excited States and Photo-Induced Structural Phase Transitions; Nasu, K., Ed.; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1997; Volume 124, pp. 142–150. [Google Scholar]
- Kishine, J.; Luty, T.; Yonemitsu, K. Ferroelectric phase transition, iconicity condensation, and multicriticality in charge-transfer complexes. Phys. Rev. B 2004, 69, 075115. [Google Scholar] [CrossRef]
- Kishine, J.; Ohara, T.; Luty, T.; Yonemitsu, K. Inter-chain Coulomb-lattice Relaxation and multicriticality in charge transfer organic complexes. Synth. Met. 2005, 154, 257–260. [Google Scholar] [CrossRef]
- Blume, M.; Emery, V.J.; Griffiths, R.B. Ising model for the λ transition and phase separation in He3-He4 mixtures. Phys. Rev. A 1971, 4, 1071–1077. [Google Scholar] [CrossRef]
- Lajzerowicz, J.; Sivardière, J. Spin-1 lattice-gas model. I. Condensation and solidification of a simple fluid. Phys. Rev. A 1975, 11, 2079–2089. [Google Scholar] [CrossRef]
- Luty, T. Ground state phase diagram of mixed-stack compounds with intermolecular electron transfer. Acta Phys. Pol. A 1995, 87, 1009–1021. [Google Scholar] [CrossRef]
- Otsuka, Y.; Seo, H.; Yoshimi, K.; Kato, T. Finite temperature neutral-ionic transition and lattice dimerization in charge-transfer complexes: QCM study. Phys. B 2012, 407, 1793–1795. [Google Scholar] [CrossRef]
- Aoki, S.; Nakayama, T.; Miura, A. Temperature-induced neutral-ionic transition in dimethyltetrathiafulvalene-p-chloranil. Phys. Rev. B 1993, 48, 626–629. [Google Scholar] [CrossRef]
- Collet, E.; Buron-Le Cointe, M.; Lemée-Cailleau, M.H.; Cailleau, H.; Toupet, L.; Meven, M.; Mattauch, S.; Heger, G.; Karl, N. Structural evidence of ferrielectric neutral ionic layered ordering in 2,6-dimethyltetrathiafulvalene-p-chloranil. Phys. Rev. B 2001, 63, 054105. [Google Scholar] [CrossRef]
- Horiuchi, S.; Okimoto, Y.; Kumai, R.; Tokura, Y. Quantum phase transition in organic charge-transfer complexes. Science 2003, 299, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Okimoto, Y.; Kumai, R.; Horiuchi, S.; Okamoto, H.; Tokura, Y. Quantum neutral-ionic phase transition as investigated by Raman scattering and X-ray diffraction. J. Phys. Soc. Jpn. 2005, 74, 2165–2168. [Google Scholar] [CrossRef]
- Toledano, J.C.; Toledano, P. The Landau Theory of Phases Transitions; World Scientific: Singapore, 1987. [Google Scholar]
- Oison, V.; Rabiller, P.; Katan, C. Theoretical investigation of the ground state properties of DMTTF-CA: A step toward the understanding of charge transfer complexes undergoing the neutral-to-ionic phase transition. J. Phys. Chem. A 2004, 108, 11049–11055. [Google Scholar] [CrossRef]
- Tolédano, P.; Guennou, M. Theory of antiferroelectric phase transitions. Phys. Rev. B 2016, 94, 014107. [Google Scholar] [CrossRef]
- Iwase, F.; Miyagawa, K.; Fujiyama, S.; Kanoda, K.; Horiuchi, S.; Tokura, Y. Neutral-ionic phase transition in DMTTF-QCl4 investigated by 35Cl NQR. J. Phys. Soc. Jpn. 2007, 76, 073701. [Google Scholar] [CrossRef]
- Bachheimer, J.P.; Dolino, G. Measurement of the order parameter of α-quartz by second-harmonic generation of light. Phys. Rev. B 1975, 11, 3195–3205. [Google Scholar] [CrossRef]
- Ranzieri, P.; Masino, M.; Girlando, A.; Lemée-Cailleau, M.H. Temperature-induced valence and structural instability in DMTTF-CA: Single-crystal Raman and infrared measurements. Phys. Rev. B 2007, 76, 134115. [Google Scholar] [CrossRef]
- Castagnetti, N.; Kociok-Köhn, G.; Da Como, E.; Girlando, A. Temperature-induced valence instability in the charge-transfer crystal TMB-TCNQ. Phys. Rev. B 2017, 95, 024101. [Google Scholar] [CrossRef]
- Horiuchi, S.; Okimoto, Y.; Kumai, R.; Tokura, Y. Anomalous valence fluctuations near a ferroelectric transition in an organic charge-transfer complex. J. Phys. Soc. Jpn. 2000, 69, 1302–1305. [Google Scholar] [CrossRef]
- Girlando, A.; Pecile, C.; Torrance, J.B. A key to understanding ionic mixed stack organic solids: Tetrathiafulvalene-bromanil. Solid State Commun. 1985, 54, 753–759. [Google Scholar] [CrossRef]
- Garcia, P.; Dahaoui, S.; Fertey, P.; Wenger, E.; Lecomte, C. Crystallographic investigation of temperature-induced phase transition of the tetrathiafulvalene-p-bromanil TTF-BA charge-transfer complex. Phys. Rev. B 2005, 72, 104115. [Google Scholar] [CrossRef]
- Kagawa, F.; Horiuchi, S.; Tokunaga, M.; Fujioka, J.; Tokura, Y. Ferroelectricity in one-dimensional organic quantum magnet. Nat. Phys. 2010, 6, 169–172. [Google Scholar] [CrossRef]
- Horiuchi, S.; Okimoto, Y.; Kumai, R.; Tokura, Y. Ferroelectric valence transition and phase diagram of a series of charge-transfer complexes of 4,4’-dimethyltetrathiafulvalene and tetrahalo-p-benzoquinones. J. Am. Chem. Soc. 2001, 123, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Iwase, F.; Miyagawa, K.; Kanoda, K.; Horiuchi, S.; Tokura, Y. NQR study of neutral-ionic phase transition and quantum paraelectric state in organic charge-transfer complexes. Solid State Sci. 2008, 10, 1752–1756. [Google Scholar] [CrossRef]
- Lemée-Cailleau, M.H.; Collet, E.; Buron-Le Cointe, M.; Grach, N.; Ouladdiaf, B.; Moussa, F.; Hasegawa, T.; Takahashi, Y.; Roisnel, T.; Cailleau, H. Down to the quantum limit at the neutral-to-ionic phase transition of (BEDT-TTF)-(ClMe-TCNQ): Symmetry analysis and phase diagram. J. Phys. Chem. B 2007, 111, 6167–6172. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H.; Motokawa, N.; Chiyo, T.; Takemura, M.; Yamashita, M.; Sagayama, H.; Arima, T. Stepwise neutral-ionic phase transitions in a covalently bonded donor/acceptor chain compound. J. Am. Chem. Soc. 2011, 133, 5338–5345. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Terakura, K. First-principles study of spontaneous polarization in tetrathiafulvalene-p-chloranil. Phys. B 2010, 405, S338–S340. [Google Scholar] [CrossRef]
- Giovannetti, G.; Kumar, S.; Stroppa, A.; van den Brink, J.; Picozzi, S. Multiferroelectricity in TTF-CA organic molecular crystals predicted through ab initio calculations. Phys. Rev. Lett. 2009, 103, 266401. [Google Scholar] [CrossRef] [PubMed]
- Dawber, M. Viewpoint: Electrons weight in on Ferroelectricity. Physics 2012, 5, 63. [Google Scholar] [CrossRef]
- King-Smith, R.D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651–1654. [Google Scholar] [CrossRef]
- Resta, R. Macroscopic polarization as geometric quantum phase. Europhys. Lett. 1993, 22, 133–138. [Google Scholar] [CrossRef]
- Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994, 66, 899–915. [Google Scholar] [CrossRef]
- Spaldin, N.A. A beginner’s guide to the modern theory of polarization. J. Solid State Chem. 2012, 195, 2–10. [Google Scholar] [CrossRef]
- Ishibashi, S.; Terakura, K.; Horiuchi, S. First-principles electronic structure study for organic ferroelectric tetrathiafulvalene-p-bromanil. J. Phys. Soc. Jpn. 2010, 79, 043703. [Google Scholar] [CrossRef]
- Egami, T.; Ishihara, S.; Tachiki, M. Lattice effect of strong electron correlation: Implication for ferroelectricity and superconductivity. Science 1993, 261, 1307–1310. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, S.; Egami, T.; Tachiki, M. Enhancement of the electron-lattice interaction due to strong electron correlation. Phys. Rev. B 1994, 49, 8944–8954. [Google Scholar] [CrossRef]
- Ishihara, S.; Tachiki, M.; Egami, T. Covalency contributions to the electronic polarizability in dielectric compounds. Phys. Rev. B 1994, 49, 16123–16128. [Google Scholar] [CrossRef]
- Resta, R.; Sorella, S. Many-body effects on polarization and dynamical charges in a partly covalent polar insulator. Phys. Rev. Lett. 1995, 74, 4738–4741. [Google Scholar] [CrossRef] [PubMed]
- Pike, N.A.; Van Troeye, B.; Dewandre, A.; Petretto, G.; Gonze, X.; Rignanese, G.M.; Verstraete, J. Origin of the counterintuitive dynamic charge in the transition metal dichalcogenides. Phys. Rev. B 2017, 95, 201106. [Google Scholar] [CrossRef]
- Del Freo, L.; Painelli, A.; Soos, Z.G. Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition. Phys. Rev. Lett. 2002, 89, 027402. [Google Scholar] [CrossRef] [PubMed]
- Soos, Z.G.; Bewick, S.A.; Peri, A.; Painelli, A. Dielectric response of modified Hubbard models with neutral-ionic and Peierls transitions. J. Chem. Phys. 2004, 120, 6712–6720. [Google Scholar] [CrossRef] [PubMed]
- D’Avino, G.; Verstraete, M.J. Are hydrogen-bonded charge transfer crystals room temperature ferroelectrics? Phys. Rev. Lett. 2014, 113, 237602. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Terakura, K. Exotic ferroelectricity in tetrathafulvalene-p-chloranil: Anomalous effective charges and a picture in the framework of maximally localized Wannier orbitals. J. Phys. Soc. Jpn. 2014, 83, 073702. [Google Scholar] [CrossRef]
- Tekakura, K.; Ishibashi, S. Mechanism of covalency-induced electric polarization within the framework of maximally localized Wannier orbitals. Phys. Rev. B 2015, 91, 195120. [Google Scholar] [CrossRef]
- Ravy, S. Study of molecular conductors by X-ray diffuse scattering. Chem. Rev. 2004, 104, 5609–5634. [Google Scholar] [CrossRef] [PubMed]
- Nagaosa, N.; Takimoto, J. Theory of neutral-ionic transition in organic crystals. I. Monte Carlo simulation of modified Hubbard model. J. Phys. Soc. Jpn. 1986, 55, 2737–2744. [Google Scholar] [CrossRef]
- Nagaosa, N.; Takimoto, J. Theory of neutral-ionic transition in organic crystals. II. Effect of the intersite Coulomb interaction. J. Phys. Soc. Jpn. 1986, 55, 2745–2753. [Google Scholar] [CrossRef]
- Nagaosa, N. Theory of neutral-ionic transition in organic crystals. III. Effect of the electron-lattice interaction. J. Phys. Soc. Jpn. 1986, 55, 2754–2764. [Google Scholar] [CrossRef]
- Nagaosa, N. Theory of neutral-ionic transition in organic crystals. IV. Phenomenological viewpoint. J. Phys. Soc. Jpn. 1986, 55, 3488–3497. [Google Scholar] [CrossRef]
- Tokura, Y.; Koshihara, S.; Iwasa, Y.; Okamoto, H.; Komatsu, T.; Koda, T.; Iwasawa, N.; Saito, G. Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity. Phys. Rev. Lett. 1989, 63, 2405–2408. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, T.; Miyamoto, T.; Yamakawa, H.; Terashige, T.; Ono, T.; Kida, N.; Okamoto, H. Terahertz-field-induced large macroscopic polarization and domain-wall dynamics in an organic molecular dielectric. Phys. Rev. Lett. 2017, 118, 107602. [Google Scholar] [CrossRef] [PubMed]
- Okimoto, Y.; Horiuchi, S.; Saitoh, E.; Kumai, R.; Tokura, Y. Far-infrared optical response of neutral-ionic phase transition in an organic charge-transfer complex. Phys. Rev. Lett. 2001, 87, 187401. [Google Scholar] [CrossRef]
- D’Avino, G.; Girlando, A.; Painelli, A.; Lemée-Cailleau, M.H.; Soos, Z.G. Anomalous dispersion of optical phonons at the neutral-ionic transition: Evidence from diffuse x-ray scattering. Phys. Rev. Lett. 2007, 99, 156407. [Google Scholar] [CrossRef] [PubMed]
- Masino, M.; Girlando, A.; Soos, Z.G. Evidence for a soft mode in the temperature induced neutral-ionic transition of TTF-CA. Chem. Phys. Lett. 2003, 369, 428–433. [Google Scholar] [CrossRef]
- Moreac, A.; Girard, A.; Delugeard, Y.; Marqueton, Y. The neutral-to-ionic phase transition of TTF-CA: A Raman and infrared study versus temperature at atmospheric pressure. J. Phys. Condens. Matter 1996, 8, 3553–3567. [Google Scholar] [CrossRef]
- Masino, M.; Girlando, A.; Brillante, A.; Della Valle, R.G.; Venuti, E.; Drichko, N.; Dressel, M. Lattice dynamics of TTF-CA across the neutral-ionic transition. Chem. Phys. 2006, 325, 71–77. [Google Scholar] [CrossRef]
- Girlando, A.; Masino, M.; Painelli, A.; Drichko, N.; Dressel, M.; Brillante, A.; Della Valle, R.G.; Venuti, E. Direct evidence of overdamped Peierls-coupled modes in the temperature-induced phase transition in tetrathiafulvalene-chloranil. Phys. Rev. B 2008, 78, 045103. [Google Scholar] [CrossRef]
- Aubry, S. A unified approach to the interpretation of displacive and order-disorder systems. I. Thermodynamical aspect. J. Chem. Phys. 1975, 62, 3217–3229. [Google Scholar] [CrossRef]
- Aubry, S. A unified approach to the interpretation of displacive and order-disorder systems. II. Displacive systems. J. Chem. Phys. 1976, 64, 3392–3402. [Google Scholar] [CrossRef]
- Luty, T.; Cailleau, H.; Koshihara, S.; Collet, E.; Takesada, M.; Lemee-Cailleau, M.H.; Buron-Le Cointe, M.; Nagaosa, N.; Tokura, Y.; Zienkiewicz, E.; et al. Static and dynamic order of cooperative multi-electron transfer. Europhys. Lett. 2002, 59, 619–625. [Google Scholar] [CrossRef]
- Okamoto, H.; Mitani, T.; Tokura, Y.; Koshihara, S.; Komatsu, T.; Iwasa, Y.; Koda, T.; Saito, G. Anomalous dielectric response in tetrathiafulvalene-p-chloranil as observed in temperature- and pressure-induced neutral-to-ionic phase transition. Phys. Rev. B 1991, 43, 8224–8232. [Google Scholar] [CrossRef]
- Mitani, T.; Kaneko, Y.; Tanuma, S.; Tokura, Y.; Koda, T.; Saito, G. Electric conductivity and phase diagram of a mixed-stack charge-transfer crystal: Tetrathiafulvalene-p-chloranil. Phys. Rev. B 1987, 35, 427–429. [Google Scholar] [CrossRef]
- Tokura, Y.; Okamoto, H.; Koda, T.; Mitani, T. Pressure-induced neutral-to-ionic phase transition in TTF-p-chloranil studied by infrared vibrational spectroscopy. Solid State Commun. 1986, 57, 607–610. [Google Scholar] [CrossRef]
- Kaneko, Y.; Tanuma, S.; Tokura, Y.; Koda, T.; Mitani, T.; Saito, G. Optical reflectivity spectra of the mixed-stack organic charge-transfer crystal tetrathiafulvalene-p-chloranil under hydrostatic pressure. Phys. Rev. B 1987, 35, 8024–8029. [Google Scholar] [CrossRef]
- Takaoka, K.; Kaneko, Y.; Okamoto, H.; Tokura, Y.; Koda, T.; Mitani, T.; Saito, G. Infrared molecular-vibration spectra of tetrathiafulvalene-chloranil crystal at low temperature and high pressure. Phys. Rev. B 1987, 36, 3884–3887. [Google Scholar] [CrossRef]
- Okamoto, H.; Koda, T.; Tokura, Y.; Mitani, T.; Saito, G. Pressure-induced neutral-to-ionic phase transition in charge-transfer crystals of tetrathiafulvalene-p-benzoquinone derivatives. Phys. Rev. B 1989, 39, 10693–10701. [Google Scholar] [CrossRef]
- Matsuzaki, H.; Takamatsu, H.; Kishida, H.; Okamoto, H. Valence fluctuation and domain-wall dynamics in pressure-induced neutral-to-ionic phase transition of organic charge-transfer crystal. J. Phys. Soc. Jpn. 2005, 74, 2925–2929. [Google Scholar] [CrossRef]
- Masino, M.; Girlando, A.; Brillante, A. Intermediate regime in pressure-induced neutral-ionic transition in tetrathiafulvalene-chloranil. Phys. Rev. B 2007, 76, 064114. [Google Scholar] [CrossRef]
- Dengl, A.; Beyer, R.; Peterseim, T.; Ivek, T.; Untereiner, G.; Dressel, M. Evolution of ferroelectricity in tetrathiafulvalene-p-chloranil as a function of pressure and temperature. J. Chem. Phys. 2014, 140, 244511. [Google Scholar] [CrossRef] [PubMed]
- Takehara, R.; Miyagawa, K.; Kanoda, K.; Miyamoto, T.; Matsuzaki, H.; Okamoto, H.; Taniguchi, H.; Matsubayashi, K.; Uwatoko, Y. Electron transport in TTF-CA under high pressures. Phys. B 2015, 460, 83–87. [Google Scholar] [CrossRef]
- Tsuchiizu, M.; Yoshioka, H.; Seo, H. Phase competition, Solitons, and domain walls in neutral-ionic transition systems. J. Phys. Soc. Jpn. 2016, 85, 104705. [Google Scholar] [CrossRef]
- Fukuyama, H.; Ogata, M. Solitons in the crossover between band insulator and Mott insulator: Applications to TTF-Chloranil under pressure. J. Phys. Soc. Jpn. 2016, 85, 023702. [Google Scholar] [CrossRef]
- Mitani, T.; Saito, G.; Tokura, Y.; Koda, T. Soliton formation at the neutral-to-ionic phase transition in the mixed-stack charge-transfer crystal tetrathiafulvalene-p-chloranil. Phys. Rev. Lett. 1984, 53, 842–845. [Google Scholar] [CrossRef]
- Yoshinari, Y.; Maniwa, Y.; Takahashi, T.; Mizoguchi, K.; Mitani, T. 1H-NMR studies of neutral-ionic transition in TTF-chloranil. Synth. Met. 1987, 19, 521–526. [Google Scholar] [CrossRef]
- Toudic, B.; Gallier, J.; Boumaza, M.; Cailleau, H. Proton spin-lattice relaxation study of the neutral-to-ionic transition in TTF-chloranil. J. Phys. 1990, 51, 1671–1678. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Kobayashi, K.; Kumai, R.; Ishibashi, S. Ionic versus electronic ferroelectricity in donor-acceptor molecular sequences. Chem. Lett. 2014, 43, 26–35. [Google Scholar] [CrossRef]
- Ishihara, S. Electronic ferroelectricity in molecular organic crystals. J. Phys. Condens. Matter 2014, 26, 493201. [Google Scholar] [CrossRef] [PubMed]
- Tomic, S.; Dressel, M. Ferroelectricity in molecular solids: A review of electrodynamic properties. Rep. Prog. Phys. 2015, 78, 096501. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, F.; Horiuchi, S.; Matsui, H.; Kumai, R.; Onose, Y.; Hasegawa, T.; Tokura, Y. Electric-field control of solitons in a ferroelectric organic charge-transfer salt. Phys. Rev. Lett. 2010, 104, 227602. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, F.; Horiuchi, S.; Tokura, Y. Quantum phenomena emerging near a ferroelectric critical point in a donor-acceptor organic charge-transfer complex. Crystals 2017, 7, 106. [Google Scholar] [CrossRef]
- Moritomo, T.; Miyamoto, T.; Okamoto, H. Ultrafast electron and molecular dynamics in photoinduced and electric-field-induced neutral-ionic transitions. Crystals 2017, 7, 132. [Google Scholar]
- Nasu, K. (Ed.) Photoinduced Phase Transitions; World Scientific: Singapore, 2004. [Google Scholar]
- Cailleau, H.; Luty, T.; Koshihara, S.; Servol, M.; Lorenc, M.; Buron-Le Cointe, M.; Collet, E. PIPT from the beginning to future. Acta Phys. Pol. A 2012, 121, 297–306. [Google Scholar] [CrossRef]
- Cailleau, H.; Lorenc, M.; Buron-Le Cointe, M.; Servol, M.; Cammarata, M.; Collet, E. Impacting materials by light and seeing their structural dynamics. Eur. Phys. J. Spec. Top. 2013, 222, 1077–1092. [Google Scholar] [CrossRef]
- Tokura, Y.; Okamoto, H.; Koda, T.; Mitani, T.; Saito, G. Nonlinear electric transport and switching phenomenon in the mixed-stack charge-transfer crystal of tetrathiafulvalene-p-chloranil. Phys. Rev. B 1988, 38, 2215–2218. [Google Scholar] [CrossRef]
- Kampfrath, T.; Tanaka, K.; Nelson, K.A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 2013, 7, 680–690. [Google Scholar] [CrossRef]
- Hirori, H.; Tanaka, K. Dynamical nonlinear interactions of solids with strong terahertz pulses. J. Phys. Soc. Jpn. 2016, 85, 082001. [Google Scholar] [CrossRef]
- Koshihara, S.; Takahashi, Y.; Sakai, H.; Tokura, Y.; Luty, T. Photoinduced cooperative charge transfer in low-dimensional organic crystals. J. Phys. Chem. B 1999, 103, 2592–2600. [Google Scholar] [CrossRef]
- Suzuki, T.; Sakamaki, T.; Tanimura, K.; Koshihara, S.; Tokura, Y. Ionic-to-neutral phase transformation induced by photoexcitation of the charge-transfer band in tetrathiafulvalene-p-chloranil crystals. Phys. Rev. B 1999, 60, 6191–6193. [Google Scholar] [CrossRef]
- Iwai, S.; Tanaka, S.; Fujinuma, K.; Kishida, H.; Okamoto, H.; Tokura, Y. Ultrafast optical switching from an ionic to a neutral state in tetrathiafulvalene-p-chloranil (TTF-CA) observed in femtosecond reflection spectroscopy. Phys. Rev. Lett. 2002, 88, 057402. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, K. Femtosecond time-resoved reflection spectroscopy of photoinduced ionic-neutral phase transition in TTF-CA crystals. Phys. Rev. B 2004, 70, 144112. [Google Scholar] [CrossRef]
- Okamoto, H.; Ishige, Y.; Tanaka, S.; Kishida, H.; Iwai, S.; Tokura, Y. Photoinduced phase transition in tetrathiafulvalene-p-chloranil observed in femtosecond reflection spectroscopy. Phys. Rev. B 2004, 70, 165202. [Google Scholar] [CrossRef]
- Iwai, S.; Ishige, Y.; Tanaka, S.; Okimoto, Y.; Tokura, Y.; Okamoto, H. Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound. Phys. Rev. Lett. 2006, 96, 057403. [Google Scholar] [CrossRef] [PubMed]
- Uemura, H.; Okamoto, H. Direct detection of the ultrafast response of charges and molecules in the photoinduced neutral-to-ionic transition of the organic tetrathiafulvalene-p-chloranil solid. Phys. Rev. Lett. 2010, 105, 258302. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Uemura, H.; Okamoto, H. Role of Coulomb interactions and spin-Peierls dimerizations in neutral-to-ionic phase transition investigated by femtosecond reflection spectroscopy. J. Phys. Soc. Jpn. 2012, 81, 073703. [Google Scholar] [CrossRef]
- Matsubara, Y.; Okimoto, Y.; Yoshida, T.; Ishikawa, T.; Koshihara, S.; Onda, K. Photoinduced neutral-to-ionic phase transition in tetrathiafulvalene-p-chloranil studied by time-resolved vibrational spectroscopy. J. Phys. Soc. Jpn. 2011, 80, 124711. [Google Scholar] [CrossRef]
- Itoh, C.; Fukuda, S. FT-IR study of Photo-induced phase transition in organic charge-transfer crystal of TTF-CA. Phys. Status Solidi 2006, 3, 3446–3451. [Google Scholar] [CrossRef]
- Collet, E.; Lemée-Cailleau, M.H.; Buron-Le Cointe, M.; Cailleau, H.; Wulff, M.; Luty, T.; Koshihara, S.; Meyer, M.; Toupet, L.; Rabiller, P.; et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 2003, 300, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Guerin, L.; Collet, E.; Lemée-Cailleau, M.H.; Buron-Le Cointe, M.; Cailleau, H.; Plech, A.; Wulff, M.; Koshihara, S.; Luty, T. Probing photoinduced phase transition in a charge-transfer molecular crystal by 100 picosecond x-ray diffraction. Chem. Phys. 2004, 299, 163–170. [Google Scholar] [CrossRef]
- Collet, E.; Buron-Le Cointe, M.; Cailleau, H. X-ray diffraction investigation of the nature and the mechanism of photoinduced phase transition in molecular materials. J. Phys. Soc. Jpn. 2006, 75, 011002. [Google Scholar] [CrossRef]
- Nowaza, S.; Adachi, S.; Takahashi, J.I.; Tazaki, R.; Guerin, L.; Daimon, M.; Tomita, A.; Sato, T.; Chollet, M.; Collet, E.; et al. Developing 100 ps-resolved x-ray structural analysis capabilities on beamline NW14A at the Photo Factory Advanced Ring. J. Synchrotron Radiat. 2007, 14, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Guerin, L.; Hebert, J.; Buron-Le Cointe, M.; Adachi, S.; Koshihara, S.; Cailleau, H.; Collet, E. Capturing one-dimensional precursors of a photoinduced transformation in a material. Phys. Rev. Lett. 2010, 105, 246101. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, M.; Nozawa, S.; Sato, T.; Tomita, A.; Adachi, S.; Koshihara, S. Time-resolved x-ray crystal structure analysis for elucidating the hidden “over-neutralized” phase of TTF-CA. RSC Adv. 2013, 3, 16313–16317. [Google Scholar] [CrossRef]
- Bertoni, R.; Lorenc, M.; Cailleau, H.; Tissot, A.; Laisney, J.; Boillot, M.L.; Stoleriu, L.; Enaschescu, C.; Collet, E. Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 2016, 15, 606–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenc, M.; Hebert, J.; Moisan, N.; Trzop, E.; Servol, M.; Buron-Le Cointe, M.; Cailleau, H.; Boillot, M.L.; Pontecorvo, E.; Wulff, M.; et al. Successive dynamical steps of photoinduced switching of a molecular Fe(III) spin-crossover material by time-resolved X-ray diffraction. Phys. Rev. Lett. 2009, 103, 028301. [Google Scholar] [CrossRef] [PubMed]
- Peterseim, T.; Haremski, P.; Dressel, M. Random-walk annihilation process of photo-induced neutral-ionic domain walls in TTF-CA. Europhys. Lett. 2015, 109, 67003. [Google Scholar] [CrossRef]
- Peterseim, T.; Dressel, M. Molecular dynamics of electrical- and optical-driven phase transitions: Time-resolved infrared studies using Fourier-transform spectrometers. J. Infrared Millim. Terahz Waves 2017, 38, 104–123. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yada, H.; Yamakawa, H.; Okamoto, H. Ultrafast modulation of polarization amplitude by terahertz fields in electronic-type organic ferroelectrics. Nat. Commun. 2013, 4, 2586. [Google Scholar] [CrossRef] [PubMed]
- Gomi, H.; Yamagishi, N.; Mase, T.; Inagaki, T.J.; Takahashi, A. Instantaneous charge and dielectric response to terahertz pulse excitation in TTF-CA. Phys. Rev. B 2017, 95, 094116. [Google Scholar] [CrossRef]
- Ishikawa, T.; Sagae, Y.; Naitoh, Y.; Kawakami, Y.; Itoh, H.; Yamamoto, K.; Yakushi, K.; Kishida, H.; Sasaki, T.; Ishihara, S.; et al. Optical freezing of charge motion in an organic conductor. Nat. Commun. 2014, 5, 5528. [Google Scholar] [CrossRef] [PubMed]
- Yonemitsu, K.; Nasu, K. Theory of photoinduced phase transitions. J. Phys. Soc. Jpn. 2006, 75, 011008. [Google Scholar] [CrossRef]
- Yonemitsu, K.; Nasu, K. Theory of photoinduced phase transitions in itinerant electron systems. Phys. Rep. 2008, 465, 1–60. [Google Scholar] [CrossRef]
- Huai, P.; Zheng, H.; Nasu, K. Theory for photoinduced ionic-neutral structural phase transition in quasi-one-dimensional organic molecular crystal TTF-CA. J. Phys. Soc. Jpn. 2000, 69, 1788–1800. [Google Scholar] [CrossRef]
- Yonemitsu, K. Phase transition in a one-dimensional extended Peierls-Hubbard model with a pulse of oscillating electric field: II linear behavior in neutral-to-ionic phase transition. J. Phys. Soc. Jpn. 2004, 73, 2879–2886. [Google Scholar] [CrossRef]
- Yonemitsu, K. Interchain coupling effects on photoinduced phase transitions between neutral and ionic phases in an extended Hubbard model with alternating potentials and an electron-lattice coupling. Phys. Rev. B 2006, 73, 155120. [Google Scholar] [CrossRef]
- Yonemitsu, K. Effects of lattice and molecular phonons on photoinduced neutral-to-ionic transition dynamics in tetrathiafulvalene-p-chloranil. J. Phys. Soc. Jpn. 2011, 80, 084707. [Google Scholar] [CrossRef]
- Cavatorta, L.; Painelli, A.; Soos, Z.G. Coherent excitations at the neutral-ionic transition: Femtosecond dynamics on diabatic potential energy surfaces. Phys. Rev. B 2015, 91, 174301. [Google Scholar] [CrossRef]
- Brazovskii, S.; Kirova, N. Dynamical phase transitions and pattern formation induced by a pulse pumping of excitons to a system near a thermodynamic instability. Phys. Rev. B 2016, 94, 054302. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics. In Course of Theoretical Physics, 3rd ed.; Pergamon Press: Oxford, UK, 2008; Volume 5, pp. 459–471. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cointe, M.B.-L.; Collet, E.; Toudic, B.; Czarnecki, P.; Cailleau, H. Back to the Structural and Dynamical Properties of Neutral-Ionic Phase Transitions. Crystals 2017, 7, 285. https://doi.org/10.3390/cryst7100285
Cointe MB-L, Collet E, Toudic B, Czarnecki P, Cailleau H. Back to the Structural and Dynamical Properties of Neutral-Ionic Phase Transitions. Crystals. 2017; 7(10):285. https://doi.org/10.3390/cryst7100285
Chicago/Turabian StyleCointe, Marylise Buron-Le, Eric Collet, Bertrand Toudic, Piotr Czarnecki, and Hervé Cailleau. 2017. "Back to the Structural and Dynamical Properties of Neutral-Ionic Phase Transitions" Crystals 7, no. 10: 285. https://doi.org/10.3390/cryst7100285
APA StyleCointe, M. B. -L., Collet, E., Toudic, B., Czarnecki, P., & Cailleau, H. (2017). Back to the Structural and Dynamical Properties of Neutral-Ionic Phase Transitions. Crystals, 7(10), 285. https://doi.org/10.3390/cryst7100285