Electro-optical Effect of Gold Nanoparticle Dispersed in Nematic Liquid Crystals
Abstract
:1. Introduction
2. Experimental Preparations
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
NLC | nematic liquid crystal |
GNP | gold nanoparticle |
LC | liquid crystal |
NP | nanoparticle |
PDLC | polymer-dispersed liquid crystal |
POM | polarized optical microscope |
ITO | indium–tin–oxide |
PI | polyimide |
T-V | transmission versus voltage |
References
- Park, H.-G.; Lee, J.-J.; Dong, K.-Y.; Oh, B.-Y.; Kim, Y.-H.; Jeong, H.-Y.; Ju, B.-K.; Seo, D.-S. Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography. Soft Matter 2011, 7, 5610–5614. [Google Scholar] [CrossRef]
- Fumiaki, H.; Kei-ichi, I.; Naoki, T.; Shunsuke, K.; Kohki, T. Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles. Jpn. J. Appl. Phys. 2007, 46, L796. [Google Scholar]
- Huang, C.-Y.; Lai, C.-C.; Tseng, Y.-H.; Yang, Y.-T.; Tien, C.-J.; Lo, K.-Y. Silica-nanoparticle-doped nematic display with multistable and dynamic modes. Appl. Phys. Lett. 2008, 92, 221908. [Google Scholar] [CrossRef]
- Kurochkin, O.; Buchnev, O.; Iljin, A.; Park, S.K.; Kwon, S.B.; Grabar, O.; Yu, R. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A Pure Appl. Opt. 2009, 11, 024003. [Google Scholar] [CrossRef]
- Podoliak, N.; Buchnev, O.; Herrington, M.; Mavrona, E.; Kaczmarek, M.; Kanaras, A.G.; Stratakis, E.; Blach, J.-F.; Henninot, J.-F.; Warenghem, M. Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 2014, 4, 46068–46074. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, Y.-G.; Park, H.-G.; Lee, K.-M.; Yang, S.; Jung, H.-Y.; Seo, D.-S. Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices. Liq. Cryst. 2011, 38, 871–875. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, X.; Zhao, J.; Chai, Y.; Zhuang, W.; Wang, L. Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal. Mater. Lett. 2006, 60, 2889–2892. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chien, L.-C. Carbon nanotube doped liquid crystal ocb cells: Physical and electro-optical properties. Opt. Express 2008, 16, 12777–12785. [Google Scholar] [CrossRef] [PubMed]
- Podgornov, F.V.; Ryzhkova, A.V.; Haase, W. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals. Appl. Phys. Lett. 2010, 97, 212903. [Google Scholar] [CrossRef]
- Yannopapas, V.; Fytas, N.; Kyrimi, V.; Kallos, E.; Vanakaras, A.G.; Photinos, D.J. Light scattering by a metallic nanoparticle coated with a nematic liquid crystal. Phys. Status Solidi (a) 2013, 210, 335–340. [Google Scholar] [CrossRef]
- Peroukidis, S.D.; Yannopapas, V.; Vanakaras, A.G.; Droulias, S.; Photinos, D.J. Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal. Liq. Cryst. 2014, 41, 1430–1435. [Google Scholar] [CrossRef]
- Yannopapas, V.; Klapp, S.H.L.; Peroukidis, S.D. Magneto-optical properties of liquid-crystalline ferrofluids. Opt. Mater. Express 2016, 6, 2681–2688. [Google Scholar] [CrossRef]
- Prasad, S.K.; Kumar, M.V.; Shilpa, T.; Yelamaggad, C. Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv. 2014, 4, 4453–4462. [Google Scholar] [CrossRef]
- Krishna Prasad, S.; Sandhya, K.; Nair, G.G.; Hiremath, U.S.; Yelamaggad, C.; Sampath, S. Electrical conductivity and dielectric constant measurements of liquid crystal–gold nanoparticle composites. Liq. cryst. 2006, 33, 1121–1125. [Google Scholar] [CrossRef]
- Podoliak, N.; Bartczak, D.; Buchnev, O.; Kanaras, A.G.; Kaczmarek, M. High optical nonlinearity of nematic liquid crystals doped with gold nanoparticles. J. Phys. Chem. C. 2012, 116, 12934–12939. [Google Scholar] [CrossRef]
- Urbanski, M.; Lagerwall, J.P. Nanoparticles dispersed in liquid crystals: Impact on conductivity, low-frequency relaxation and electro-optical performance. J. Mater. Chem. C 2016, 4, 3485–3491. [Google Scholar] [CrossRef]
- Kobayashi, S.; Miyama, T.; Nishida, N.; Sakai, Y.; Shiraki, H.; Shiraishi, Y.; Toshima, N. Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibitingfrequency modulation response. J. Display Technol. 2006, 2, 121–129. [Google Scholar] [CrossRef]
- Miyamoto, K.; Saito, S.; Takahashi, T.; Toko, Y.; Yokoyama, S.; Takigawa, S.; Toshima, N.; Kobayashi, S. Characteristics of nanoparticle doped nematic liquid crystals in low temperature. Mol. Cryst. Liq. Cryst. 2009, 507, 108–113. [Google Scholar] [CrossRef]
- Ha, Y.-S.; Kim, H.-J.; Park, H.-G.; Seo, D.-S. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Express 2012, 20, 6448–6455. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-K.; Choi, J.-H.; Na, H.-J.; Lim, J.-H.; Han, J.-M.; Hwang, J.-Y.; Seo, D.-S. Low-power operation of vertically aligned liquid-crystal system via anatase-TiO 2 nanoparticle dispersion. Opt. Lett. 2009, 34, 3653–3655. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Toshima, N.; Maeda, K.; Yoshikawa, H.; Xu, J.; Kobayashi, S. Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Appl. Phys. Lett. 2002, 81, 2845–2847. [Google Scholar] [CrossRef]
- Lee, W.; Wang, C.-Y.; Shih, Y.-C. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl. Phys. Lett. 2004, 85, 513–515. [Google Scholar] [CrossRef]
- Kwan-Young, H.; Tetsuya, M.; Tatsuo, U. Accurate determination and measurement error of pretilt angle in liquid crystal cell. Jpn. J. Appl. Phys. 1993, 32, L277. [Google Scholar]
- Loudet, J.C. Colloidal inclusions in liquid crystals: Phase separation mechanisms and some dynamical aspects. Liq. Cryst. Today 2005, 14, 1–14. [Google Scholar] [CrossRef]
- Schadt, M. The twisted nematic effect: Liquid crystal displays and liquid crystal materials. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1988, 165, 405–438. [Google Scholar] [CrossRef]
- Blinov, L.M.; Chigrinov, V. Electrooptic Effects in Liquid Crystal Materials; Springer: New York, NY, USA, 2012. [Google Scholar]
- Jakeman, E.; Raynes, E.P. Electro-optic response times in liquid crystals. Phys. Lett. A 1972, 39, 69–70. [Google Scholar] [CrossRef]
- Perkowski, P. Dielectric spectroscopy of liquid crystals. Theoretical model of ito electrodes influence on dielectric measurements. Opto-Electron. Rev. 2009, 17, 180–186. [Google Scholar] [CrossRef]
- Perkowski, P. Dielectric spectroscopy of liquid crystals. Electrodes resistivity and connecting wires inductance influence on dielectric measurements. Opto-Electron. Rev. 2012, 20, 79–86. [Google Scholar] [CrossRef]
- Rahman, M.; Hsieh, C.-W.; Wang, C.-T.; Jian, B.-R.; Lee, W. Dielectric relaxation dynamics in liquid—dye composites. Dyes Pigm. 2010, 84, 128–133. [Google Scholar] [CrossRef]
- Okutan, M.; Yakuphanoglu, F.; Köysal, O.; Durmuş, M.; Ahsen, V. Dielectric spectroscopy analysis in employing liquid crystal phthalonitrile derivative in nematic liquid crystals. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2007, 67, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Brás, A.R.; Dionísio, M.; Huth, H.; Schick, C.; Schönhals, A. Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopy. Phys. Rev. E 2007, 75, 061708. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.K.; Seo, J.-H.; Yoon, T.-H.; Kim, J.C.; Woo, H.S.; Shin, S.T. Effects of pentacene on the properties of negative anisotropy nematic liquid crystal in vertical alignment cell. Jpn. J. Appl. Phys. 2009, 48, 111502. [Google Scholar] [CrossRef]
- Haase, W.; Wróbel, S. Relaxation Phenomena: Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors, Metallic Glasses; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Liao, S.-W.; Hsieh, C.-T.; Kuo, C.-C.; Huang, C.-Y. Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions. Appl. Phys. Lett. 2012, 101, 161906. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-J.; Lin, L.-J.; Huang, M.-K.; Huang, C.-Y. Electro-optical Effect of Gold Nanoparticle Dispersed in Nematic Liquid Crystals. Crystals 2017, 7, 287. https://doi.org/10.3390/cryst7100287
Hsu C-J, Lin L-J, Huang M-K, Huang C-Y. Electro-optical Effect of Gold Nanoparticle Dispersed in Nematic Liquid Crystals. Crystals. 2017; 7(10):287. https://doi.org/10.3390/cryst7100287
Chicago/Turabian StyleHsu, Che-Ju, Li-Jyuan Lin, Mao-Kun Huang, and Chi-Yen Huang. 2017. "Electro-optical Effect of Gold Nanoparticle Dispersed in Nematic Liquid Crystals" Crystals 7, no. 10: 287. https://doi.org/10.3390/cryst7100287
APA StyleHsu, C. -J., Lin, L. -J., Huang, M. -K., & Huang, C. -Y. (2017). Electro-optical Effect of Gold Nanoparticle Dispersed in Nematic Liquid Crystals. Crystals, 7(10), 287. https://doi.org/10.3390/cryst7100287