Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications
Abstract
:1. Introduction
2. Construction Strategies of Heterojunctions Based on II-VI Compound Semiconductor 1-D Nanostructures
2.1. Core-Shell Heterojunctions
2.2. 1-D Axial Heterojunctions
2.3. Crossed Nanowire Heterojunctions
2.4. 1-D Nanostructure/Thin Film or Si Substrate Heterojunctions
3. Optoelectronic Applications of Heterojunctions Based on II-VI Compound Semiconductor 1-D Nanostructures
3.1. Solar Cells
3.2. Photodetectors
3.3. Other Applications
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chuang, S.; Gao, Q.; Kapadia, R.; Ford, A.C.; Guo, J.; Javey, A. Ballistic InAs nanowire transistors. Nano Lett. 2013, 13, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Hochbaum, A.I.; Yang, P. Semiconductor nanowires for energy conversion. Chem. Rev. 2009, 110, 527–546. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Ding, K.; Jie, J. The way to high-performance single nanowire photodetectors: Problems and prospects. Sci. China Phys. Mech. 2016, 60, 017031. [Google Scholar] [CrossRef]
- Zhai, T.; Li, L.; Wang, X.; Fang, X.; Bando, Y.; Golberg, D. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors. Adv. Funct. Mater. 2010, 20, 4233–4248. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Guo, P.; Li, D.; Fan, P.; Zheng, W.; Zhu, X.; Jiang, Y.; Zhou, H.; Hu, W.; et al. Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. Nano Energy 2017, 32, 28–35. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, Y.; Wang, L.; Li, S.; Wu, B.; Lan, X.; Yu, Y.; Wu, C.; Wang, Z.; Jie, J. High-performance CdS: P nanoribbon field-effect transistors constructed with high-κ dielectric and top-gate geometry. Appl. Phys. Lett. 2010, 96, 123118. [Google Scholar] [CrossRef]
- Lou, Z.; Li, L.; Shen, G. Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale 2016, 8, 5219–5225. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ying, Y.; Tong, L. Photonic nanowires: From subwavelength waveguides to optical sensors. Accounts Chem. Res. 2013, 47, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mao, J.; Shao, Z.; Diao, S.; Hu, D.; Tang, Z.; Wu, H.; Jie, J. Efficient photovoltaic devices based on p-ZnSe/n-CdS core–shell heterojunctions with high open-circuit voltage. J. Mater. Chem. C 2017, 5, 2107–2113. [Google Scholar] [CrossRef]
- Haberern, K.W.; Baude, P.F.; Flamholtz, S.J.; Buijs, M.; Horikx, J.J.L.; Law, K.K.; Haase, M.A.; Miller, T.J.; Haugen, G.M. II-VI index-guided lasers for optical recording. In In-Plane Semiconductor Lasers: From Ultraviolet to Midinfrared; SPIE: Bellingham, WA, USA, 1997; Volume 3001, pp. 101–105. [Google Scholar]
- Green, M.A. Third-generation Photovoltaics: Advanced Solar Energy Conversion. Phys. Today 2004, 57, 71–72. [Google Scholar]
- Schlesinger, T.E.; James, R.B. Semiconductors for Room Temperature Nuclear Applications; Academic Press: Cambridge, MA, USA, 1995; Volume 43, p. 335. [Google Scholar]
- Jie, J.; Zhang, W.; Bello, I.; Lee, S.-T. One-dimensional II-VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today 2010, 5, 313–336. [Google Scholar] [CrossRef]
- Liu, Y.; Zapien, J.A.; Shan, Y.Y.; Geng, C.-Y.; Lee, C.S.; Lee, S.-T. Wavelength-controlled lasing in ZnXCd1−XS single-crystal nanoribbons. Adv. Mater. 2005, 17, 1372–1377. [Google Scholar] [CrossRef]
- Hu, L.; Yan, J.; Kim, Y.; Fei, G.; Watanabe, K.; Sekiguchi, T.; Zhang, L.; Fang, X. Cathodoluminescence and photoconductive characteristics of single-crystal ternary CdS/CdSe/CdS biaxial nanobelts. Small 2015, 11, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, H.; Tang, Q.; Ferdous, S.; Liu, F.; Mannsfeld, S.C.B.; Hu, W.; Briseno, A.L. Organic single-crystalline p-n junction nanoribbons. J. Am. Chem. Soc. 2010, 132, 11580–11584. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Kempa, T.J.; Lieber, C.M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24. [Google Scholar] [CrossRef] [PubMed]
- He, Z.B.; Zhang, W.J.; Tang, Y.B.; Wang, H.B.; Cao, Y.L.; Song, H.S.; Bello, I.; Lee, C.S.; Lee, S.T. Crossbar heterojunction field effect transistors of CdSe: In nanowires and Si nanoribbons. Appl. Phys. Lett. 2009, 95, 253107. [Google Scholar] [CrossRef]
- Wang, D.; Qian, F.; Yang, C.; Zhong, Z.; Lieber, C.M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871–874. [Google Scholar] [CrossRef]
- Jeon, P.J.; Lee, Y.T.; Lim, J.Y.; Kim, J.S.; Hwang, D.K.; Im, S. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor. Nano Lett. 2016, 16, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Jie, J.; Wang, L.; Yu, Y.; Peng, Q.; Zhang, X.; Cai, J.; Guo, H.; Wu, D.; Jiang, Y. Chlorine-doped n-type CdS nanowires with enhanced photoconductivity. Nanotechnology 2010, 21, 505203. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C.M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Chen, L.Y.; Chang, C.H.; Sun, Y.H.; Cheng, Y.W.; Ke, M.Y.; Lu, Y.H.; Kuo, H.C.; Huang, J. Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays. Nanotechnology 2010, 22, 045202. [Google Scholar] [CrossRef] [PubMed]
- Kempa, T.J.; Tian, B.; Kim, D.R.; Hu, J.; Zheng, X.; Lieber, C.M. Single and tandem axial pin nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, H.W.; Liu, Z.X.; Ma, X.; Chen, R.; Yu, Y.Q.; Wu, C.Y.; Hu, J.G.; Zhang, Y.; Li, Q.; et al. Core–shell CdS: Ga-ZnTe:Sb p-n nano-heterojunctions: Fabrication and optoelectronic characteristics. J. Mater. Chem. C 2015, 3, 2933–2939. [Google Scholar] [CrossRef]
- Wang, K.; Rai, S.C.; Marmon, J.; Chen, J.; Yao, K.; Wozny, S.; Cao, B.; Yan, Y.; Zhang, Y.; Zhou, W. Nearly lattice matched all wurtzite CdSe/ZnTe type II core–shell nanowires with epitaxial interfaces for photovoltaics. Nanoscale 2014, 6, 3679–3685. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Huo, Z.; Brittman, S.; Cao, H.; Yang, P. Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 2011, 6, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Meng, D.; Hu, D.; Tang, Z.; Niu, X.; Yu, F.; Ju, L. Construction of coaxial ZnSe/ZnO p-n junctions and their photovoltaic applications. Appl. Phys. Express 2016, 9, 025201. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, Z.; Wu, X.; Jiang, T.; Zheng, N.; Jie, J. High-sensitivity and self-driven photodetectors based on Ge-CdS core–shell heterojunction nanowires via atomic layer deposition. CrystEngComm 2016, 18, 3919–3924. [Google Scholar] [CrossRef]
- Wang, L.; Jie, J.; Wu, C.; Wang, Z.; Yu, Y.; Peng, Q.; Zhang, X.; Hu, Z.; Wu, D.; Guo, H. Coaxial ZnSe/Si nanocables with controlled p-type shell doping. Nanotechnology 2010, 21, 285206. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Fang, X.S.; Zhang, L.D.; Bando, Y.; Gautam, U.; Dierre, B.; Sekiguchi, T.; Golberg, D. Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures. Nano Lett. 2008, 8, 2794–2799. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yan, J.; Liao, M.; Xiang, H.; Gong, X.; Zhang, L.; Fang, X. An optimized ultraviolet-a light photodetector with wide-range photoresponse based on zns/zno biaxial nanobelt. Adv. Mater. 2012, 24, 2305–2309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, F.; Chen, H.; Wang, Y.; Jiang, M.; Fang, X.; Zhao, D. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett. 2015, 15, 3988–3993. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.C.; Wang, K.; Chen, J.; Marmon, J.K.; Bhatt, M.; Wozny, S.; Zhang, Y.; Zhou, W. Enhanced Broad Band Photodetection through Piezo-Phototronic Effect in CdSe/ZnTe Core/Shell Nanowire Array. Adv. Electron. Mater. 2015, 1, 1400050. [Google Scholar] [CrossRef]
- Rai, S.C.; Wang, K.; Ding, Y.; Marmon, J.K.; Bhatt, M.; Zhang, Y.; Zhou, W.; Wang, Z.L. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array. ACS Nano 2015, 9, 6419–6427. [Google Scholar] [CrossRef] [PubMed]
- Heurlin, M.; Wickert, P.; Fält, S.; Borgström, M.T.; Deppert, K.; Samuelson, L.; Magnusson, M.H. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 2011, 11, 2028–2031. [Google Scholar] [CrossRef] [PubMed]
- Lysov, A.; Vinaji, S.; Offer, M.; Gutsche, C.; Regolin, I.; Mertin, W.; Geller, M.; Prost, W.; Bacher, G.; Tegude, F.-J. Spatially resolved photoelectric performance of axial GaAs nanowire pn-diodes. Nano Res. 2011, 4, 987–995. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Zhang, X.; Zhang, Y.; Bian, L.; Wu, Y.; Xie, C.; Han, Y.; Wang, Y.; Gao, P.; et al. ZnSe nanoribbon/Si nanowire p-n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. J. Mater. Chem. 2012, 22, 22873–22880. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, D.; Tang, Z.; Ma, D. Construction of ZnSe-ZnO axial p-n junctions via regioselective oxidation process and their photo-detection applications. Appl. Surf. Sci. 2015, 357, 1939–1943. [Google Scholar] [CrossRef]
- Huang, Y.; Duan, X.; Wei, Q.; Lieber, C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Hayden, O.; Agarwal, R.; Lieber, C.M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Duan, X.; Lieber, C.M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Luo, L.B.; Chen, J.J.; Hu, J.G.; Wu, C.Y.; Wang, L.; Yu, Y.Q.; Zhu, Z.F.; Jie, J.S. Fabrication of p-type ZnSe: Sb nanowires for high-performance ultraviolet light photodetector application. Nanotechnology 2013, 24, 095603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, Z.; Hu, D.; Meng, D.; Jia, S. Nanoscale p-n junctions based on p-type ZnSe nanowires and their optoelectronic applications. Mater. Lett. 2016, 168, 121–124. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.; Ren, Z.F.; Ge, C.W.; Liu, Z.X.; He, S.J.; Yu, Y.Q.; Wu, C.Y.; Luo, L.B. Plasmonic silver nanosphere enhanced ZnSe nanoribbon/Si heterojunction optoelectronic devices. Nanotechnology 2016, 27, 215202. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Jiang, Y.; Li, S.; Li, F.; Li, J.; Lan, X.; Zhang, Y.; Wu, C.; Luo, L.; Jie, J. Construction of high-quality CdS: Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications. Nanotechnology 2011, 22, 405201. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, X.; Xie, C.; Wu, C.; Zhang, X.; Bian, L.; Wu, Y.; Wang, L.; Zhang, Y.; Jie, J. Doping dependent crystal structures and optoelectronic properties of n-type CdSe: Ga nanowries. Nanoscale 2011, 3, 4798–4803. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Q.; Luo, L.B.; Zhu, Z.F.; Nie, B.; Zhang, Y.G.; Zeng, L.H.; Zhang, Y.; Wu, C.Y.; Wang, L.; Jiang, Y. High-speed ultraviolet-visible-near infrared photodiodes based on p-ZnS nanoribbon-n-silicon heterojunction. CrystEngComm 2013, 15, 1635–1642. [Google Scholar] [CrossRef]
- Xie, C.; Li, F.; Zeng, L.; Luo, L.; Wang, L.; Wu, C.; Jie, J. Surface charge transfer induced p-CdS nanoribbon/n-Si heterojunctions as fast-speed self-driven photodetectors. J. Mater. Chem. C 2015, 3, 6307–6313. [Google Scholar] [CrossRef]
- Cai, J.; Jie, J.; Jiang, P.; Wu, D.; Xie, C.; Wu, C.; Wang, Z.; Yu, Y.; Wang, L.; Zhang, X.; et al. Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications. Phys. Chem. Chem. Phys. 2011, 13, 14663–14667. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, M.; Wang, X.; Wu, D.; Xie, C.; Wu, C.; Wang, Z.; Yu, Y.; Wang, L.; Zhang, X.; et al. Tuning the p-type conductivity of ZnSe nanowires via silver doping for rectifying and photovoltaic device applications. J. Mater. Chem. A 2013, 1, 1148–1154. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, L.; Wu, Y.; Wang, Y.; Gao, P.; Han, Y.; Jie, J. ZnSe nanowire/Si p-n heterojunctions: Device construction and optoelectronic applications. Nanotechnology 2013, 24, 395201. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Luo, L.B.; Zeng, L.H.; Zhu, L.; Chen, J.J.; Nie, B.; Hu, J.G.; Li, Q.; Wu, C.Y.; Wang, L.; et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: Photovoltaic devices and zero-power photodetectors. CrystEngComm 2012, 14, 7222–7228. [Google Scholar] [CrossRef]
- Liu, C.; Dai, L.; Ye, Y.; Sun, T.; Peng, R.G.; Wen, X.; Wu, P.; Qin, G. High-efficiency color tunable n-CdSxSe1−x/p+-Si parallel-nanobelts heterojunction light-emitting diodes. J. Mater. Chem. 2010, 20, 5011–5015. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Bie, Y.Q.; Liao, Z.M.; Wang, P.W.; Zhou, Y.B.; Han, X.B.; Ye, Y.; Zhao, Q.; Wu, X.S.; Dai, L.; Xu, J.; et al. Single ZnO Nanowire/p-type GaN Heterojunctions for Photovoltaic Devices and UV Light-Emitting Diodes. Adv. Mater. 2010, 22, 4284–4287. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; O’Brien, P. Recent developments in II-VI and III-VI semiconductors and their applications in solar cells. J. Mater. Chem. 2006, 16, 1597–1602. [Google Scholar] [CrossRef]
- Ferekides, C.S.; Balasubramanian, U.; Mamazza, R.; Viswanathan, V.; Zhao, H.; Morel, D.L. CdTe thin film solar cells: Device and technology issues. Solar Energy 2004, 77, 823–830. [Google Scholar] [CrossRef]
- Britt, J.; Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 1993, 62, 2851–2852. [Google Scholar] [CrossRef]
- Martinuzzi, S. Trends and problems in CdS/CuxS thin film solar cells: A review. Sol. Cells 1982, 5, 243–268. [Google Scholar] [CrossRef]
- Zhou, J.; Gu, Y.; Hu, Y.; Mai, W.; Yeh, P.H.; Bao, G.; Sood, A.K.; Polla, D.L.; Wang, Z.L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103. [Google Scholar] [CrossRef] [PubMed]
- Kum, M.C.; Jung, H.; Chartuprayoon, N.; Chen, W.; Mulchandani, A.; Myung, N.V. Tuning electrical and optoelectronic properties of single cadmium telluride nanoribbon. J. Phys. Chem. C 2012, 116, 9202–9208. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Zheng, J.; Lin, X.; Zhan, H.; Li, S.; Kang, J.; Bleuse, J.; Mariette, H. ZnO/ZnSe type II core-shell nanowire array solar cell. Sol. Energy Mater. Sol. C 2012, 102, 15–18. [Google Scholar] [CrossRef]
- Ye, Y.; Dai, L.; Sun, T.; You, L.P.; Zhu, R.; Gao, J.Y.; Peng, R.M.; Yu, D.P.; Qin, G.G. High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices. J. Appl. Phys. 2010, 108, 044301. [Google Scholar] [CrossRef]
- Amos, F.F.; Morin, S.A.; Streifer, J.A.; Hamers, R.J.; Jin, S. Photodetector arrays directly assembled onto polymer substrates from aqueous solution. J. Am. Chem. Soc. 2007, 129, 14296–14302. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, J.; Yu, Y.; Zhang, L.; Zhang, G.; Jiang, S.; Liu, W.; Song, H.; Tang, J. Effect of ligand passivation on morphology, optical and photoresponse properties of CdS colloidal quantum dots thin film. J. Mater. Sci. Mater. Electron. 2014, 25, 1499–1504. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, Y.; Zhang, Y.; Li, J.; Yu, Y.; Zhang, Y.; Zhu, Z.; Wang, L.; Wu, C.; Luo, L.; et al. Device structure-dependent field-effect and photoresponse performances of p-type ZnTe: Sb nanoribbons. J. Mater. Chem. 2012, 22, 6206–6212. [Google Scholar] [CrossRef]
- Chang, S.P.; Lu, C.Y.; Chang, S.J.; Chiou, Y.Z.; Hsueh, T.J.; Hsu, C.L. Electrical and optical characteristics of UV photodetector with interlaced ZnO nanowires. IEEE J. Sel. Top. Quantum 2011, 17, 990–995. [Google Scholar] [CrossRef]
- Cao, Y.L.; Liu, Z.T.; Chen, L.M.; Tang, Y.B.; Luo, L.B.; Jie, J.S.; Zhang, W.J.; Lee, S.T.; Lee, C.S. Single-crystalline ZnTe nanowires for application as high-performance Green/Ultraviolet photodetector. Opt. Express 2011, 19, 6100–6108. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, D.; Geng, H. Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications. Crystals 2017, 7, 307. https://doi.org/10.3390/cryst7100307
Zhang X, Wu D, Geng H. Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications. Crystals. 2017; 7(10):307. https://doi.org/10.3390/cryst7100307
Chicago/Turabian StyleZhang, Xiwei, Di Wu, and Huijuan Geng. 2017. "Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications" Crystals 7, no. 10: 307. https://doi.org/10.3390/cryst7100307
APA StyleZhang, X., Wu, D., & Geng, H. (2017). Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications. Crystals, 7(10), 307. https://doi.org/10.3390/cryst7100307