Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of µ2-Bis(Diphenylphosphino)Methane Copper(I) Tetrahydroborate [(μ2-dppm)2Cu2][η2-BH4]2
2.2. Computational Details
2.3. X-ray Crystallography
3. Results and Discussion
3.1. Experimental Characterization
3.2. CCDC Analysis
3.3. DFT Calculations
4. Summary and Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niedner-Schatteburg, G. Cooperative effects in clusters and oligonuclear complexes of transition metals in isolation. In Clusters—Contemporary Insight in Structure and Bonding; Dehnen, S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–40. [Google Scholar]
- Chaudret, B.; Delavaux, B.; Poilblanc, R. Bisdiphenylphosphinomethane in dinuclear complexes. Coord. Chem. Rev. 1988, 86, 191–243. [Google Scholar] [CrossRef]
- Balakrishna, M.S.; Reddy, V.S.; Krishnamurthy, S.S.; Nixon, J.F.; Laurent, J.C.T.R.B.S. Coordination chemistry of diphosphinoamine and cyclodiphosphazane ligands. Coord. Chem. Rev. 1994, 129, 1–90. [Google Scholar] [CrossRef]
- Mague, J.T. “Short-bite” ligands in cluster synthesis. J. Cluster Sci. 1995, 6, 217–269. [Google Scholar] [CrossRef]
- Maggini, S. Classification of P,N-binucleating ligands for hetero- and homobimetallic complexes. Coord. Chem. Rev. 2009, 253, 1793–1832. [Google Scholar] [CrossRef]
- Naik, S.; Mague, J.T.; Balakrishna, M.S. Short-bite PNP ligand-supported rare tetranuclear [Cu4I4] clusters: Structural and photoluminescence studies. Inorg. Chem. 2014, 53, 3864–3873. [Google Scholar] [CrossRef] [PubMed]
- Fliedel, C.; Ghisolfi, A.; Braunstein, P. Functional short-bite ligands: Synthesis, coordination chemistry, and applications of N-functionalized bis(diaryl/dialkylphosphino)amine-type ligands. Chem. Rev. 2016, 116, 9237–9304. [Google Scholar] [CrossRef] [PubMed]
- Muetterties, E.L. Metal clusters in catalysis III.—Clusters as models for chemisorption processes and heterogeneous catalysis. Bull. Soc. Chim. Belg. 1975, 84, 959–986. [Google Scholar] [CrossRef]
- Muetterties, E.L.; Krause, M.J. Catalysis by molecular metal clusters. Angew. Int. Ed. 1983, 22, 135–148. [Google Scholar] [CrossRef]
- Adam, F.I.; Hogarth, G.; Richards, I. Models of the iron-only hydrogenase: Reactions of [Fe2(CO)6(μ-pdt)] with small bite-angle diphosphines yielding bridge and chelate diphosphine complexes [Fe2(CO)4(diphosphine)(μ-pdt)]. J. Organomet. Chem. 2007, 692, 3957–3968. [Google Scholar] [CrossRef]
- Adam, F.I.; Hogarth, G.; Kabir, S.E.; Richards, I. Models of the iron-only hydrogenase: Synthesis and protonation of bridge and chelate complexes [Fe2(CO)4{Ph2P(CH2)nPPh2}(μ-pdt)] (n = 2–4)—Evidence for a terminal hydride intermediate. C. R. Chim. 2008, 11, 890–905. [Google Scholar] [CrossRef]
- Yen, T.-H.; Chu, K.-T.; Chiu, W.-W.; Chien, Y.-C.; Lee, G.-H.; Chiang, M.-H. Synthesis and characterization of the diiron biomimics bearing phosphine borane for hydrogen formation. Polyhedron 2013, 64, 247–254. [Google Scholar] [CrossRef]
- Isaacs, E.E.; Graham, W.A.G. Phosphorus-31 nuclear magnetic resonance spectra of fac and mer isomers of tricarbonylbis[bis(diphenylphosphino)methane]molybdenum. Inorg. Chem. 1975, 14, 2560–2561. [Google Scholar] [CrossRef]
- Cotton, F.A.; Matusz, M. Synthesis, molecular structure and spectroscopic characterization of Mo(CO)2I2 (η2-dppm)(η1-dppm). Polyhedron 1987, 6, 261–267. [Google Scholar] [CrossRef]
- Gao, Y.; Holah, D.G.; Hughes, A.N.; Spivak, G.J.; Havighurst, M.D.; Magnuson, V.R.; Polyakov, V. Reactions of FeIII with LiAlH4 and LiBH4 in the presence of bis(diphenylphosphino)methane (dppm) and CO. The crystal and molecular structures of trans-[Fe(Cl)(CO)(η2-dppm)2][FeCl4], trans-Fe(H)2(η2-dppm)2 and cis-[Fe(η2-S2CH(η2-dppm)2]BF4. Polyhedron 1997, 16, 2797–2807. [Google Scholar] [CrossRef]
- Gandhi, T.; Nethaji, M.; Jagirdar, B.R. Novel double insertion of carbon disulfide into two Ru−H bonds of [(dppm)2Ru(H)2] (dppm = Ph2PCH2PPh2): Synthesis and crystal structure of a methanedithiolate complex. Inorg. Chem. 2003, 42, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Wilton-Ely, J.D.E.T.; Solanki, D.; Hogarth, G. Synthesis and reactivity of the Ruthenium(II) Dithiocarbonate complex [Ru(κ2-S2CO)(dppm)2] (dppm = bis(diphenylphosphino)methane). Inorg. Chem. 2006, 45, 5210–5214. [Google Scholar] [CrossRef] [PubMed]
- Puddephatt, R.J. Chemistry of bis(diphenylphosphino)methane. Chem. Soc. Rev. 1983, 12, 99–127. [Google Scholar] [CrossRef]
- Bera, J.K.; Nethaji, M.; Samuelson, A.G. Anion-controlled nuclearity and metal−metal distances in copper(I)−dppm complexes (dppm = Bis(diphenylphosphino)methane). Inorg. Chem. 1999, 38, 218–228. [Google Scholar] [CrossRef]
- Fan, W.-W.; Li, Z.-F.; Li, J.-B.; Yang, Y.-P.; Yuan, Y.; Tang, H.-Q.; Gao, L.-X.; Jin, Q.-H.; Zhang, Z.-W.; Zhang, C.-L. Synthesis, structure, terahertz spectroscopy and luminescent properties of copper (I) complexes with bis(diphenylphosphino)methane and N-donor ligands. J. Mol. Struct. 2015, 1099, 351–358. [Google Scholar] [CrossRef]
- El Sayed Moussa, M.; Evariste, S.; Wong, H.L.; Le Bras, L.; Roiland, C.; Le Polles, L.; Le Guennic, B.; Costuas, K.; Yam, V.W.W.; Lescop, C. A solid state highly emissive Cu(I) metallacycle: Promotion of cuprophilic interactions at the excited states. Chem. Commun. 2016, 52, 11370–11373. [Google Scholar] [CrossRef] [PubMed]
- He, L.-H.; Luo, Y.-S.; Di, B.-S.; Chen, J.-L.; Ho, C.-L.; Wen, H.-R.; Liu, S.-J.; Wang, J.-Y.; Wong, W.-Y. Luminescent three- and four-coordinate dinuclear copper(i) complexes triply bridged by bis(diphenylphosphino)methane and functionalized 3-(2-Pyridyl)-1,2,4-triazole ligands. Inorg. Chem. 2017, 56, 10311–10324. [Google Scholar] [CrossRef] [PubMed]
- Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Highly active and selective catalysis of copper diphosphine complexes for the transformation of carbon dioxide into silyl formate. Chem. Eur. J. 2013, 19, 10030–10037. [Google Scholar] [CrossRef] [PubMed]
- Nakamae, K.; Kure, B.; Nakajima, T.; Ura, Y.; Tanase, T. Facile insertion of carbon dioxide into Cu2(μ-H) dinuclear units supported by tetraphosphine ligands. Chem. Asian J. 2014, 9, 3106–3110. [Google Scholar] [CrossRef] [PubMed]
- Nakamae, K.; Tanaka, M.; Kure, B.; Nakajima, T.; Ura, Y.; Tanase, T. A fluxional Cu8H6 cluster supported by bis(diphenylphosphino)methane and its facile reaction with CO2. Chem. Eur. J. 2017, 23, 9457–9461. [Google Scholar] [CrossRef] [PubMed]
- Shiu, L.-C.; Liu, S.-A.; Wu, T.-S.; Shiu, K.-B. Synthesis and structures of d10–d10 M2(μ-dppm)2 complexes with sensitive metal–metal distances in response to the binding of sigma donors. J. Chin. Chem. Soc. 2016, 63, 1051–1055. [Google Scholar] [CrossRef]
- Bera, J.K.; Nethaji, M.; Samuelson, A.G. Synthesis and structures of oxyanion encapsulated copper(i)−dppm complexes (dppm = bis(diphenylphosphino)methane). Inorg. Chem. 1999, 38, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Ahlquist, M.; Fokin, V.V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics 2007, 26, 4389–4391. [Google Scholar] [CrossRef]
- Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev. 2010, 39, 1302–1315. [Google Scholar] [CrossRef] [PubMed]
- Worrell, B.T.; Malik, J.A.; Fokin, V.V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 2013, 340, 457. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Tolentino, D.R.; Melaimi, M.; Bertrand, G. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction”. Sci. Adv. 2015, 1, e1500304. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Allam, B.K.; Singh, K.N.; Singh, V.P. Binuclear Cu(I) complex of (N1E,N2E)-N1,N2-bis(phenyl(pyridin-2-yl)methylene)oxalohydrazide: Synthesis, crystal structure and catalytic activity for the synthesis of 1,2,3-triazoles. J. Mol. Catal. A Chem. 2015, 398, 158–163. [Google Scholar] [CrossRef]
- Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.-Y.; Astruc, D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev. 2016, 316, 1–20. [Google Scholar] [CrossRef]
- Zhu, L.; Brassard, C.J.; Zhang, X.; Guha, P.M.; Clark, R.J. On the mechanism of copper(i)-catalyzed azide–alkyne cycloaddition. Chem. Rec. 2016, 16, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.S.; Lakshmi, K.V.; Tilley, T.D. Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) complexes in copper-catalyzed azide–alkyne cycloaddition. J. Am. Chem. Soc. 2017, 139, 5378–5386. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.W.J.; Harding, P.J.C. Convenient synthesis of bis(triphenylphosphine) copper(I) tetrahydroborate and reduction of acid chlorides to aldehydes. Tetrahedron Lett. 1979, 20, 975–978. [Google Scholar] [CrossRef]
- Fleet, G.W.J.; Harding, P.J.C.; Whitcombe, M.J. Bis(triphenylphosphine)copper (I) tetrahydroborate in the reduction of P-toluenesulphonylhydrazones and 2,4,6-triisopropylbenzenesulphonyl hydrazones (trisyl hdyrazones) to alkanes. Tetrahedron Lett. 1980, 21, 4031–4034. [Google Scholar] [CrossRef]
- Sorrell, T.N.; Pearlman, P.S. Preparation of aldehydes from acid chlorides using copper tetrahydroborate complexes. J. Org. Chem. 1980, 45, 3449–3451. [Google Scholar] [CrossRef]
- Fleet, G.W.J.; Harding, P.J.C. Selectivity in the acid catalysed reduction of carbonyl compounds to alcohols by bis(triphenylphosphine)copper(I) tetrahydroborate: Reduction of aldehydes in the presence of ketones. Tetrahedron Lett. 1981, 22, 675–678. [Google Scholar] [CrossRef]
- Bhanushali, M.J.; Nandurkar, N.S.; Bhor, M.D.; Bhanage, B.M. Direct reductive amination of carbonyl compounds using bis(triphenylphosphine) copper(I) tetrahydroborate. Tetrahedron Lett. 2007, 48, 1273–1276. [Google Scholar] [CrossRef]
- Grutsch, P.A.; Kutal, C. Use of copper(I) phosphine compounds to photosensitize the valence isomerization of norbornadiene. J. Am. Chem. Soc. 1977, 99, 6460–6463. [Google Scholar] [CrossRef]
- Grutsch, P.A.; Kutal, C. Photobehavior of copper(I) compounds. Role of copper(I)-phosphine compounds in the photosensitized valence isomerization of norbornadiene. J. Am. Chem. Soc. 1979, 101, 4228–4233. [Google Scholar] [CrossRef]
- Liaw, B.; Orchard, S.W.; Kutal, C. Photobehavior of copper(I) compounds. 4. Role of the triplet state of (arylphosphine)copper(I) complexes in the photosensitized isomerization of dienes. Inorg. Chem. 1988, 27, 1311–1316. [Google Scholar] [CrossRef]
- Hu, X.; Soleilhavoup, M.; Melaimi, M.; Chu, J.; Bertrand, G. Air-stable (CAAC)CuCl and (CAAC)CuBH4 complexes as catalysts for the hydrolytic dehydrogenation of BH3NH3. Angew. Chem. 2015, 127, 6106–6109. [Google Scholar] [CrossRef]
- Jepsen, L.H.; Ley, M.B.; Lee, Y.-S.; Cho, Y.W.; Dornheim, M.; Jensen, J.O.; Filinchuk, Y.; Jørgensen, J.E.; Besenbacher, F.; Jensen, T.R. Boron–nitrogen based hydrides and reactive composites for hydrogen storage. Mater. Today 2014, 17, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, L.H.; Ley, M.B.; Filinchuk, Y.; Besenbacher, F.; Jensen, T.R. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage. ChemSusChem 2015, 8, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Paskevicius, M.; Sheppard, D.A.; Buckley, C.E.; Thornton, A.W.; Hill, M.R.; Gu, Q.; Mao, J.; Huang, Z.; Liu, H.K.; et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art. ChemSusChem 2015, 8, 2789–2825. [Google Scholar] [CrossRef] [PubMed]
- Dovgaliuk, I.; Filinchuk, Y. Aluminium complexes of B- and N-based hydrides: Synthesis, structures and hydrogen storage properties. Int. J. Hydrogen Energy 2016, 41, 15489–15504. [Google Scholar] [CrossRef]
- Mohtadi, R.; Orimo, S. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2016, 2, 16091. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Cerny, R.; Ravnsbaek, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal borohydrides and derivatives—Synthesis, structure and properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Mirviss, S.B.; Dougherty, H.W.; Looney, R.W. Catalyst of Transition Metal Borohydride Complexes. U.S. Patent 3,310,547, 21 March 1961. [Google Scholar]
- Marks, T.J.; Kolb, J.R. Covalent transition metal, lanthanide, and actinide tetrahydroborate complexes. Chem. Rev. 1977, 77, 263–293. [Google Scholar] [CrossRef]
- Langer, R.; Iron, M.A.; Konstantinovski, L.; Diskin-Posner, Y.; Leitus, G.; Ben-David, Y.; Milstein, D. Iron Borohydride pincer complexes for the efficient hydrogenation of ketones under mild, base-free conditions: Synthesis and mechanistic insight. Chem. Eur. J. 2012, 18, 7196–7209. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Lagaditis, P.O.; Förster, M.; Bielinski, E.A.; Hazari, N.; Holthausen, M.C.; Jones, W.D.; Schneider, S. Well-defined iron catalysts for the acceptorless reversible dehydrogenation-hydrogenation of alcohols and ketones. ACS Catal. 2014, 4, 3994–4003. [Google Scholar] [CrossRef]
- Zell, T.; Ben-David, Y.; Milstein, D. Highly efficient, general hydrogenation of aldehydes catalyzed by PNP iron pincer complexes. Catal. Sci. Technol. 2015, 5, 822–826. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Chatterjee, A.; Williamson, J.S. Reductive amination with zinc borohydride. efficient, safe route to fluorinated benzylamines. Synth. Commun. 1997, 27, 4265–4274. [Google Scholar] [CrossRef]
- Ravikumar, K.S.; Sinha, S.; Chandrasekaran, S. Diastereoselectivity in the reduction of acyclic carbonyl compounds with diisopropoxytitanium(iii) tetrahydroborate. J. Org. Chem. 1999, 64, 5841–5844. [Google Scholar] [CrossRef]
- Alinezhad, H.; Tajbakhsh, M.; Zamani, R. One-pot reductive amination of aldehydes and ketones using n-methyl-piperidine zinc borohydride (ZBNMPP) as a new reducing agent. Synlett 2006, 3, 431–0434. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Alinezhad, H. Micellar media catalyzed highly efficient reductive amination of carbonyl compounds with bis(triphenylphosphine)(tetrahydroborato)zirconium(II), [Zr(BH4)2(Ph3P)2], as a new and a highly water tolerant tetrahydroborate reducing agent. J. Iran Chem. Soc. 2009, 6, 177–186. [Google Scholar] [CrossRef]
- Mohammadi, S.; Setamdideh, D. (Acridine)(tetrahydroborato) zinc complex [Zn(BH4)2(acr)]: A new stable and efficient reducing agent. Orient. J. Chem. 2015, 31, 2395–2399. [Google Scholar] [CrossRef]
- Abdollahpour, F.; Setamdideh, D. (Caffeine)(tetrahydroborato) zinc complex [Zn(BH4)2(caf)]: A new stable and efficient reducing agent. Orient. J. Chem. 2015, 31, 1787–1792. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Z. Transition metal tetrahydroborato complexes: An orbital interaction analysis of their structure and bonding. Coord. Chem. Rev. 1996, 156, 139–162. [Google Scholar] [CrossRef]
- Makhaev, V.D. Structural and dynamic properties of tetrahydroborate complexes. Russ. Chem. Rev. 2000, 69, 727. [Google Scholar] [CrossRef]
- Besora, M.; Lledós, A. Coordination modes and hydride exchange dynamics in transition metal tetrahydroborate. In Complexes Contemporary Metal Boron Chemistry I; Marder, T., Lin, Z., Eds.; Springer: Berlin, Germany, 2008; Volume 130, pp. 149–202. [Google Scholar]
- Filippov, O.A.; Filin, A.M.; Tsupreva, V.N.; Belkova, N.V.; Lledós, A.; Ujaque, G.; Epstein, L.M.; Shubina, E.S. Proton-transfer and H2-elimination reactions of main-group hydrides EH4− (E = B, Al, Ga) with alcohols. Inorg. Chem. 2006, 45, 3086–3096. [Google Scholar] [CrossRef] [PubMed]
- Golub, I.E.; Filippov, O.A.; Gulyaeva, E.S.; Gutsul, E.I.; Belkova, N.V. The interplay of proton accepting and hydride donor abilities in the mechanism of step-wise boron hydrides alcoholysis. Inorg. Chim. Acta 2017, 456, 113–119. [Google Scholar] [CrossRef]
- Golub, I.E.; Filippov, O.A.; Gutsul, E.I.; Belkova, N.V.; Epstein, L.M.; Rossin, A.; Peruzzini, M.; Shubina, E.S. Dimerization mechanism of bis(triphenylphosphine)copper(I) tetrahydroborate: Proton transfer via a dihydrogen bond. Inorg. Chem. 2012, 51, 6486–6497. [Google Scholar] [CrossRef] [PubMed]
- Belkova, N.V.; Bakhmutova-Albert, E.V.; Gutsul, E.I.; Bakhmutov, V.I.; Golub, I.E.; Filippov, O.A.; Epstein, L.M.; Peruzzini, M.; Rossin, A.; Zanobini, F.; et al. Dihydrogen bonding in complex (PP3)RuH(η1-BH4) featuring two proton-accepting hydride sites: Experimental and theoretical studies. Inorg. Chem. 2014, 53, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Golub, I.E.; Filippov, O.A.; Belkova, N.V.; Epstein, L.M.; Rossin, A.; Peruzzini, M.; Shubina, E.S. Two pathways of proton transfer reaction to (triphos)Cu(η1-BH4) via a dihydrogen bond [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane]. Dalton Trans. 2016, 45, 9127–9135. [Google Scholar] [CrossRef] [PubMed]
- Golub, I.E.; Filippov, O.A.; Belkova, N.V.; Gutsul, E.I.; Epstein, L.M.; Rossin, A.; Peruzzini, M.; Shubina, E.S. Competition between the hydride ligands of two types in proton transfer to [{κ3-P-CH3C(CH2CH2PPh2)3}RuH(η2-BH4)]. Eur. J. Inorg. Chem. 2017. [Google Scholar] [CrossRef]
- Haddad, P.S.; Mauro, A.E.; Frem, R.C. Borohidreto complexos de cobre (I) contendo difosfinas. caracterizacao espectroscopica c comportamento termico. Quim. Nova 2001, 24, 786–789. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09; Revision D. 01; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chim. Acta 2008, 120, 215–241. [Google Scholar]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Swart, M.; Guell, M.; Luis, J.M.; Solà, M. Spin-state-corrected gaussian-type orbital basis sets. J. Phys. Chem. A 2010, 114, 7191–7197. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent molecular orbital methods. xii. further extensions of gaussian—Type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Dill, J.D.; Pople, J.A. Self-consistent molecular orbital methods. XV. Extended gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 1975, 62, 2921–2923. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Pietro, W.J.; Francl, M.M.; Hehre, W.J.; DeFrees, D.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982, 104, 5039–5048. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, J.; Zundel, G. Influence of the polarity of the environment on easily polarizable OH∙∙∙N = O-∙∙∙H+N hydrogen bonds. J. Phys. Chem. 1981, 85, 556–561. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wen, J.; Li, W. A theoretical investigation of substituent effects on the stability and reactivity of N-heterocyclic olefin carboxylates. Org. Biomol. Chem. 2015, 13, 8533–8544. [Google Scholar] [CrossRef] [PubMed]
- Sumimoto, M.; Iwane, N.; Takahama, T.; Sakaki, S. Theoretical study of trans-metalation process in palladium-catalyzed borylation of iodobenzene with diboron. J. Am. Chem. Soc. 2004, 126, 10457–10471. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Jin, D. Preliminary study on the syntheses and structures of copper complexes with bidentate phosphine ligands. Chinese J. Inorg. Chem 1993, 9, 379–383. [Google Scholar]
- Makhaev, V.; Borisov, A.; Baranetskaya, N.; Vil’chevskaya, V.; Gorelikova, Y.Y.; Krylova, A. Complexes of copper (I) tetrahydroborate with organometallic and polydentate phosphine ligands. Russ. J. Coord. Chem. 1992, 18, 416. [Google Scholar]
- Bommer, J.C.; Morse, K.W. Temperature-dependent phosphite complex equilibriums observable with NMR and IR. Inorg. Chem. 1981, 20, 1731–1734. [Google Scholar] [CrossRef]
- Makhaev, V.D.; Borisov, A.P.; Lobkovskii, É.B.; Polyakova, V.B.; Semenenko, K.N. Preparation of hydroborate complexes of copper and an investigation of the dependence of their structure on the nature of the organophosphorus ligands. Russ. Chem. Bull. 1985, 34, 1731–1736. [Google Scholar] [CrossRef]
- Khan, M.M.T.; Paul, P.; Venkatasubramanian, K. Synthesis and structural characterization of [α,α′-bis{bis(2-(diphenylphosphino)ethyl)amino}ethane] bis(tetrahydroborato)dicopper(I). Hydrogen bridge attachment of the tetrahydroborate group. Polyhedron 1991, 10, 1827–1829. [Google Scholar] [CrossRef]
- Makhaev, A.; Dolghusin, F.; Yanovskii, A.; Struchkov, Y.T. Crystal and molecular structure of the benzene solvate of [1,1′-bis(diphenylphosphino)ferrocene]copper(i)eta^2-tetrahydridoborate [Fe(C5H4PPh2)2] CuBH4·2C6H6. Russ. J. Coord. Chem. 1996, 22, 573–577. [Google Scholar]
- Lobkovskii, E.B.; Makhaev, V.D.; Borisov, A.P. Crystal and molecular structure of (tetrahydridoborato)bis(diphenylbutylphosphine)copper(I). J. Struct. Chem. 1984, 25, 496–498. [Google Scholar] [CrossRef]
- Lippard, S.J.; Ucko, D. Transition metal borohydride complexes. II. Th reaction of copper(I) compounds with boron hydride anions. Inorg. Chem. 1968, 7, 1051–1056. [Google Scholar] [CrossRef]
- Makhaev, V.; Borisov, A.; Antsyshkina, A.; Sadikov, G.; Poraj-Koshits, M.; Kudrova, N.; Mal’tseva, N.; Istomin, S.Y. Synthesis and crystal structure of (1, 10-phenanthroline)-(triethylphosphite) copper (1) tetrahydroborate. Russ. J. Coord. Chem. 1993, 19, 858–863. [Google Scholar]
- Green, B.E.; Kennard, C.H.L.; Smith, G.; Elcombe, M.M.; Moore, F.H.; James, B.D.; White, A.H. Crystal structures of α- and β-(1,10-phenanthroline)tetrahydroborato(triphenylphosphine)copper(I) and (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)tetrahydroboratocopper(I). Inorg. Chim. Acta 1984, 83, 177–189. [Google Scholar] [CrossRef]
- Bommer, J.C.; Morse, K.W. [(MePh2P)3CuBH4]: A single M-H bridged tetrahydroborate. J. Chem. Soc. Chem. Commun. 1977, 137–138. [Google Scholar] [CrossRef]
- Bianchini, C.; Ghilardi, C.A.; Meli, A.; Midollini, S.; Orlandini, A. Reactivity of copper(I) tetrahydroborates toward carbon dioxide and carbonyl sulfide. Structure of (triphos)Cu(η1-O2CH). Inorg. Chem. 1985, 24, 924–931. [Google Scholar] [CrossRef]
- Li, J.; White, J.M.; Mulder, R.J.; Reid, G.E.; Donnelly, P.S.; O’Hair, R.A.J. Synthesis, structural characterization, and gas-phase unimolecular reactivity of bis(diphenylphosphino)amino copper hydride nanoclusters [Cu3(X)(μ3-H)((PPh2)2NH)3](BF4), where X = μ2-Cl and μ3-BH4. Inorg. Chem. 2016, 55, 9858–9868. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-Z.; Dong, X.; Jing, B.; Li, W.-Z.; Cheng, J.-B.; Gong, B.-A.; Yu, Z.-W. A new unconventional halogen bond C–X···H–M between HCCX (X = Cl and Br) and HMH (M = Be and Mg): An Ab Initio study. J. Comput. Chem. 2010, 31, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Brammer, L.; Hunter, C.A.; Perutz, R.N. Metal hydrides form halogen bonds: Measurement of energetics of binding. J. Am. Chem. Soc. 2013, 136, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Lipkowski, P.; Grabowski, S.J.; Leszczynski, J. Properties of the halogen−hydride interaction: An ab initio and “atoms in molecules” analysis. J. Phys. Chem. A 2006, 110, 10296–10302. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, A.; Alipour, M.; Mousaee, M. Halogen−hydride interaction between Z−X (Z = CN, NC; X = F, Cl, Br) and H−Mg−Y (Y = H, F, Cl, Br, CH3). J. Phys. Chem. A 2011, 115, 4457–4466. [Google Scholar] [CrossRef] [PubMed]
- Jabłoński, M.; Palusiak, M. Nature of a hydride–halogen bond. A SAPT-, QTAIM-, and NBO-based study. J. Phys. Chem. A 2012, 116, 2322–2332. [Google Scholar] [CrossRef] [PubMed]
- Esrafili, M.D.; Solimannejad, M. Revealing substitution effects on the strength and nature of halogen-hydride interactions: A theoretical study. J. Mol. Model. 2013, 19, 3767–3777. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Li, Q.; Li, R.; Cheng, J.; Li, W. Is a MH (M = Be and Mg) radical a better electron donor in halogen-hydride interaction?: A theoretical comparison with HMH. Int. J. Quantum Chem. 2013, 113, 1293–1298. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Bregadze, V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]−. Some evidences of BH···X hydride-halogen bonds in 9-XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I). J. Organomet. Chem. 2017. [Google Scholar] [CrossRef]
- Moudam, O.; Kaeser, A.; Delavaux-Nicot, B.; Duhayon, C.; Holler, M.; Accorsi, G.; Armaroli, N.; Seguy, I.; Navarro, J.; Destruel, P.; et al. Electrophosphorescent homo- and heteroleptic copper(i) complexes prepared from various bis-phosphine ligands. Chem. Commun. 2007, 3077–3079. [Google Scholar] [CrossRef] [PubMed]
- Kaeser, A.; Mohankumar, M.; Mohanraj, J.; Monti, F.; Holler, M.; Cid, J.-J.; Moudam, O.; Nierengarten, I.; Karmazin-Brelot, L.; Duhayon, C.; et al. Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands. Inorg. Chem. 2013, 52, 12140–12151. [Google Scholar] [CrossRef] [PubMed]
- Bilyachenko, A.N.; Kulakova, A.N.; Levitsky, M.M.; Petrov, A.A.; Korlyukov, A.A.; Shul’pina, L.S.; Khrustalev, V.N.; Dorovatovskii, P.V.; Vologzhanina, A.V.; Tsareva, U.S.; et al. Unusual tri-, hexa-, and nonanuclear Cu(II) cage methylsilsesquioxanes: Synthesis, structures, and catalytic activity in oxidations with peroxides. Inorg. Chem. 2017, 56, 4093–4103. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | |
---|---|---|
Brutto formula | C50H52B2Cu2 P4, CH2Cl2 | C50H52B2Cu2 P4, 0.5 CH2Cl2 |
Formula weight | 1010.42 | 967.96 |
T, K | 120 | 120 |
Space group | P212121 | P21/c |
Z(Z’) | 4(1) | 4(1) |
a/Å | 14.218(2) | 23.0884(18) |
b/Å | 17.875(3) | 13.0448(10) |
c/Å | 19.523(3) | 16.0830(13) |
β/° | 90.00 | 92.055(2) |
Volume/Å3 | 4961.7(13) | 4840.8(7) |
ρcalc, g/cm3 | 1.353 | 1.328 |
μ/cm−1 | 11.28 | 10.99 |
F(000) | 2088 | 2004 |
2θmax, ° | 58 | 58 |
Reflections collected (Rint) | 50,044 (0.0480) | 56,740 (0.0429) |
Independent reflections | 13140 | 12851 |
Reflections with I > 2σ(I) | 11874 | 9781 |
Parameters | 547 | 576 |
R1 [I > 2σ (I)] | 0.0604 | 0.0368 |
wR2 | 0.1569 | 0.0974 |
GOF | 1.094 | 1.018 |
Residual electron density, e·Å−3 (ρmin/ρmax) | −2.080/1.142 | −0.730/0.840 |
Compound | νBHterm | νBHbr | δBH2 | νCuB | δBH4 | Ref. |
---|---|---|---|---|---|---|
[(EtO)3P]2Cu(η2-BH4) | 2380, 2350 | 1990, 1930 | 1135 | – | −29.1 c | [95] |
[(μ2-dppm)2Cu2][η2-BH4]2 | 2382, 2360 | 2019, 1967 | 1133 | 358 | −29.5 b | This work |
(PPh3)2Cu(η2-BH4) | 2403, 2394 | 1994,1937 | 1142 | 374 | −29.7 b | [67,96] |
[{Ph2P(CH2)2}2NCH2]2Cu(η2-BH4) | 2365 | 2010 | 1120 | – | −30.2 c | [97] |
[(MeO)3P]2Cu(η2-BH4) | 2380, 2345 | 1990, 1935 | 1135 | – | −30.4 c | [95] |
(dppm)Cu(η2-BH4) | 2382, 2360 | 2018, 1965 | 1130 | 358 | – | [94] |
“[(μ2-dppm)2Cu2][η2-BH4]2” | 2391, 2345 | 1987, 1924 | 1144 | – | – | [93] |
“(η2-dppm)Cu(η2-BH4)” | 2370, 2229 | 1984, 1949 | 1185 | 378 a | – | [71] |
(dppe)Cu(η2-BH4) | 2384, 2341 | 1990, 1928 | 1141 | – | – | [93] |
(dppe)Cu(η2-BH4) | 2380, 2360 | 2010, 1950 | 1140 | 355 | – | [94] |
(dppb)Cu(η2-BH4) | 2385, 2360 | 1985, 1950 | 1140 | – | – | [94] |
(dpph)Cu(η2-BH4) | 2388, 2360 | 1982, 1940 | 1140 | 356 | – | [94] |
(FcPPh2)2Cu(η2-BH4) | 2398, 2360 | 2005, 1960 | 1140 | – | – | [94,98] |
(Fc2PPh)2(η2-BH4) | 2398, 2360 | 2005, 1950 | 1140 | 368 | – | [94] |
(dppf)Cu(η2-BH4) | 2397, 2354 | 2013, 1970 | 1130 | 376 | – | [94] |
(nBuPPh2)2Cu(η2-BH4) | 2404, 2394 | 1995, 1937 | 1139 | 363 | – | [96,99] |
[(EtO)3P]2Cu(η2-BH4) | 2397, 2360 | 1994, 1933 | 1137 | 386 | – | [96] |
[(iPrO)3P]2Cu(η2-BH4) | 2399, 2394 | 1999, 1932 | 1137 | 384 | – | [96] |
[(Me2N)3P]2Cu(η2-BH4) | 2392, 2366 | 2023, 1946 | 1137 | 356 | – | [96] |
[(p-MeOC6H4O)3P]2Cu(η2-BH4) | 2385, 2350 | 2005, 1961 | – | – | – | [100] |
[(p-MeC6H4O)3P]2Cu(η2-BH4) | 2382, 2343 | 1990, 1930 | – | – | – | [100] |
[(m-MeC6H4O)3P]2Cu(η2-BH4) | 2380, 2343 | 2018, 1944 | – | – | – | [100] |
[(EtO)3P](phen)Cu(η2-BH4) | 2360, 2330 | 2080 | – | – | – | [101] |
(PPh3)(phen)Cu(η2-BH4) | 2360, 2330 | 2070, 1910 | 1120 | – | – | [102] |
(dmdp)Cu(η2-BH4) | 2385, 2350 | 1982 | 1128 | 398 | – | [102] |
(triphos)Cu(η1-BH4) | 2354, 2321 | 1988 | – | – | −32.8 b | [69] |
(MePPh2)3Cu(η2-BH4) | 2335, 2315 | 2050 | 1075, 1060 | – | −39.0 c | [95,103] |
[(MeO)3P]3Cu(η1-BH4) | 2340 | 2055 | – | – | −39.0 c | [95] |
[(EtO)3P]3Cu(η1-BH4) | 2335 | 2055 | – | – | −40.0 c | [95] |
(triphos)Cu(η1-BH4) | 2360, 2300 | 1980 | – | – | – | [104] |
(NP3)Cu(η1-BH4) | 2310 | 2060 | 1130, 1060 | – | – | [104] |
(EtP3)Cu(η1-BH4) | 2375 | 2000 | 1130 | – | – | [104] |
Distances, Å | 1 | Distances, Å | 2 |
---|---|---|---|
Cu(1)···Cu(2) | 3.392(1) | Cu(1)–Cu(2) | 3.2035(4) |
Cu(1)–P(2) | 2.238(2) | Cu(1)–P(2) | 2.2234(7) |
Cu(2)–P(1) | 2.253(2) | Cu(2)–P(1) | 2.2608(7) |
Cu(1)–P(3) | 2.254(2) | Cu(1)–P(3) | 2.2288(6) |
Cu(2)–P(4) | 2.257(2) | Cu(2)–P(4) | 2.2542(6) |
Cu(1)–B(1) | 2.194(9) | Cu(1)–B(1) | 2.198(2) |
Cu(2)–B(2) | 2.190(7) | Cu(2)–B(2) | 2.192(3) |
H(19)A···Cl(1’) | 2.722 | H(10)A···Cl(2)D | 3.031 |
H(13)A···Cl(1’) | 2.727 | ||
H(29)A···Cl(1’) | 2.816 | ||
H(28)A···Cl(1’) | 2.627 | ||
H(1)BD···Cl(2’) | 2.814 | H(26)A···H(1)BD | 2.246 |
Angles, ° | 1 | Angles, ° | 2 |
P(2)–Cu(1)–P(3) | 112.93(7) | P(2)–Cu(1)–P(3) | 117.74(2) |
P(1)–Cu(2)–P(4) | 111.33(6) | P(1)–Cu(2)–P(4) | 117.29(2) |
P(1)–C(1)–P(2) | 112.6(3) | P(1)–C(1)–P(2) | 110.6(1) |
P(3)–C(2)–P(4) | 109.9(4) | P(3)–C(2)–P(4) | 111.5(1) |
C(19)–H(19)A···Cl(1’) | 150.9 | C(10)–H(10)A···Cl(2)D | 149.2 |
C(13)–H(13)A···Cl(1’) | 140.8 | ||
C(29)–H(29)A···Cl(1’) | 136.0 | ||
C(28)–H(28)A···Cl(1’) | 150.4 | ||
B(1)–H(1)BD···Cl(2’) | 142.6 | C(26)–H(26)A···H(1)BD | 168.2 |
Dihedral Angles, ° | 1 | Dihedral Angles, ° | 2 |
χ1(P,Cu,Cu,P) | −92.41(6) | χ1(P,Cu,Cu,P) | 117.04(2) |
χ2(P,Cu,Cu,P) | 133.69(6) | χ2(P,Cu,Cu,P) | −118.44(2) |
Conformation | N | d[Cu(1)···Cu(2)], Å | ∠PCuP’, ° | χ[P,Cu(1),Cu(2),P’], ° | ∠PCHP’, ° | δ31P{1H}, ppm |
---|---|---|---|---|---|---|
Boat-Boat | 30 | 2.679–3.651 | 113–136 | 113–136 | 110–117 | −7.8 ÷ −15.2 |
Distorted Boat-Boat | 21 | 2.931–3.852 | 95–133 | 87–115/117–139 | 111–117 | −7.9 ÷ −25.7 |
Twist Boat-Boat | 11 | 2.743–3.757 | 110–140 | 89–103/134–164 | 109–115 | +2.1 ÷ −14.6 |
Boat-Chair | 15 | 2.735–3.901 | 117–133 | 119–138 | 111–116 | −6.3 ÷ −10.9 |
Distorted Boat-Chair | 5 | 2.712–4.644 | 115–146 | 113–171 | 110–122 | −6.6 ÷ −18.7 |
Twist Boat-Chair | 3 | 2.925/3.133 | 120–122/130–132 | 105–108/145–148 | 110–115 | −7.7/−8.2 |
Plain | 1 | 4.277 | 148/150 | 170 | 117 | – |
Chair-Chair | 20 | 3.359–4.797 | 130–145 | 179–180 | 110–147 | −5.6 ÷ −14.4 |
1 | Monomer | ||||
---|---|---|---|---|---|
Vibration type | expt | M06 | B3LYP-GD2 | M06 | B3LYP-GD2 |
νCHas(Ph) | 3075, 3049 | 3228, 3225 | 3230, 3220 | 3229, 3227 | 3228, 3218 |
νCHas(CH2) | – | 3109, 3024 | 3053, 3046 | 3058 | 3179 |
νBHtermas | 2382 | 2504 | 2507 | 2561 | 2543 |
νBHterms | 2360 | 2459 | 2493 | 2490 | 2497 |
νBHbr1as | 2019 | 2061 | 2127, 2101 | 1991 | 2035 |
νBHbr2as | 1967 | 2000 | 2057 | 1968 | 2004 |
νCuH | 1433, 1384 | 1421, 1412 | 1417, 1396 | 1453 | 1444 |
δBH | 1133 | 1165 | 1187, 1178 | 1147 | 1168 |
νCuB | 358 | 405 | 392 | 357 | 362 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkova, N.V.; Golub, I.E.; Gutsul, E.I.; Lyssenko, K.A.; Peregudov, A.S.; Makhaev, V.D.; Filippov, O.A.; Epstein, L.M.; Rossin, A.; Peruzzini, M.; et al. Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate. Crystals 2017, 7, 318. https://doi.org/10.3390/cryst7100318
Belkova NV, Golub IE, Gutsul EI, Lyssenko KA, Peregudov AS, Makhaev VD, Filippov OA, Epstein LM, Rossin A, Peruzzini M, et al. Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate. Crystals. 2017; 7(10):318. https://doi.org/10.3390/cryst7100318
Chicago/Turabian StyleBelkova, Natalia V., Igor E. Golub, Evgenii I. Gutsul, Konstantin A. Lyssenko, Alexander S. Peregudov, Viktor D. Makhaev, Oleg A. Filippov, Lina M. Epstein, Andrea Rossin, Maurizio Peruzzini, and et al. 2017. "Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate" Crystals 7, no. 10: 318. https://doi.org/10.3390/cryst7100318
APA StyleBelkova, N. V., Golub, I. E., Gutsul, E. I., Lyssenko, K. A., Peregudov, A. S., Makhaev, V. D., Filippov, O. A., Epstein, L. M., Rossin, A., Peruzzini, M., & Shubina, E. S. (2017). Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate. Crystals, 7(10), 318. https://doi.org/10.3390/cryst7100318