Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation
Abstract
:1. Introduction
2. Classical Experimental Observations and Theoretical Models
3. Interaction of Size Effects during Nanoindentation and Grain Size Effects
4. Recent Experimental Observations and Theoretical Models
5. Atomistic Simulation of Nanoindentation
- ∙
- ∙
- ∙
- Using the free surface for the sample top and bottom, incorporating the periodic boundary conditions for the remaining surfaces and putting a substrate under the thin film (see, e.g., Peng et al. [129]).
- ∙
6. Summary and Conclusions
Acknowledgments
Conflicts of Interest
References
- Bull, S.J.; Page, T.F.; Yoffe, E.H. An explanation of the indentation size effect in ceramics. Philos. Mag. Lett. 1989, 59, 281–288. [Google Scholar] [CrossRef]
- Li, H.; Bradt, R.C. The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 1993, 28, 917–926. [Google Scholar] [CrossRef]
- Zhu, T.T.; Bushby, A.J.; Dunstan, D.J. Size effect in the initiation of plasticity for ceramics in nanoindentation. J. Mech. Phys. Solids 2008, 56, 1170–1185. [Google Scholar] [CrossRef]
- Pharr, G.M.; Herbert, E.G.; Gao, Y. The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations. Annu. Rev. Mater. Res. 2010, 40, 271–292. [Google Scholar] [CrossRef]
- Mott, B.W. Microindentation Hardness Testing; Butterworths: London, UK, 1957. [Google Scholar]
- Bückle, H. Progress in microindentation hardness testing. Metall. Rev. 1959, 4, 49–100. [Google Scholar] [CrossRef]
- Gane, N. The direct measurement of the strength of metals on a submicrometer scale. Proc. R. Soc. Lond. Ser. A 1970, 317, 367–391. [Google Scholar] [CrossRef]
- Upit, G.P.; Varchenya, S.A. The size effect in the hardness of single crystals. In The Science of Hardness Testing and Its Research Applications; Westbrook, J.H., Conrad, H., Eds.; American Society for Metals: Metals Park, OH, USA, 1973; Volume 10, pp. 135–146. [Google Scholar]
- Chen, C.C.; Hendrickson, A.A. Microhardness phenomena in silver. In The Science of Hardness Testing and Its Research Applications; Westbrook, J.H., Conrad, H., Eds.; American Society for Metals: Metals Park, OH, USA, 1973; Volume 21, pp. 274–290. [Google Scholar]
- Tabor, D. Indentation hardness and its measurement: Some cautionary comments. In Microindentation Techniques in Materials Science and Engineering. ASTM STP 889; Blau, P.J., Lawn, B.R., Eds.; ASTM: Philadelphia, PA, USA, 1986; pp. 129–159. [Google Scholar]
- Stelmashenko, N.A.; Walls, M.G.; Brown, L.M.; Milman, Y.V. Microindentation on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 1993, 41, 2855–2865. [Google Scholar] [CrossRef]
- De Guzman, M.S.; Neubauer, G.; Flinn, P.; Nix, W.D. The role of indentation depth on the measured hardness of materials. Mater. Res. Soc. Symp. Proc. 1993, 308, 613–618. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Swadener, J.G.; George, E.P.; Pharr, G.M. The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 2002, 50, 681–694. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Chaudhri, M.M. The effect of the indenter load on the nanohardness of ductile metals: An experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos. Mag. A 1999, 79, 2979–3000. [Google Scholar] [CrossRef]
- Bushby, A.J.; Dunstan, D.J. Plasticity size effects in nanoindentation. J. Mater. Res. 2004, 19, 137–142. [Google Scholar] [CrossRef]
- Spary, I.J.; Bushby, A.J.; Jennett, N.M. On the indentation size effect in spherical indentation. Phil. Mag. 2006, 86, 5581–5593. [Google Scholar] [CrossRef]
- Durst, K.; Göken, M.; Pharr, G.M. Indentation size effect in spherical and pyramidal indentations. J. Phys. D Appl. Phys. 2008, 41, 074005. [Google Scholar] [CrossRef]
- Gerberich, W.W.; Tymiak, N.I.; Grunlan, J.C.; Horstemeyer, M.F.; Baskes, M.I. Interpretations of indentation size effect. J. Appl. Mech. 2002, 69, 433–442. [Google Scholar] [CrossRef]
- Bull, S.J. On the origins of the indentation size effect. Z. Metallkd. 2003, 94, 787–792. [Google Scholar] [CrossRef]
- Zhu, T.T.; Bushby, A.J.; Dunstan, D.J. Materials mechanical size effects: A review. Mater. Tech. 2008, 23, 193–209. [Google Scholar] [CrossRef]
- Kiener, D.; Durst, K.; Rester, M.; Minor, A.M. Revealing deformation mechanisms with nanoindentation. JOM 2009, 61, 14–23. [Google Scholar] [CrossRef]
- Sangwal, K. On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 2000, 63, 145–152. [Google Scholar] [CrossRef]
- King, R.B. Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 1987, 23, 1657–1664. [Google Scholar] [CrossRef]
- Giannakopoulos, A.E.; Larsson, P.L.; Vestergaard, R. Analysis of Vickers indentation. Int. J. Solids Struct. 1994, 31, 2679–2708. [Google Scholar] [CrossRef]
- Larsson, P.L.; Giannakopoulos, A.E.; SÖderlund, E.; Rowcliffe, D.J.; Vestergaard, R. Analysis of Berkovich indentation. Int. J. Solids Struct. 1996, 33, 221–248. [Google Scholar] [CrossRef]
- Bolshakov, A.; Oliver, W.C.; Pharr, G.M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 1996, 11, 760–768. [Google Scholar] [CrossRef]
- Bolshakov, A.; Oliver, W.C.; Pharr, G.M. Finite element studies of the influence of pile-up on the analysis of nanoindentation data. Mater. Res. Soc. Symp. Proc. 1996, 436, 141–146. [Google Scholar] [CrossRef]
- Bolshakov, A.; Pharr, G.M. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 1998, 13, 1049–1058. [Google Scholar] [CrossRef]
- Lichinchi, M.; Lenardi, C.; Haupt, J.; Vitali, R. Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 1998, 312, 240–248. [Google Scholar] [CrossRef]
- Huber, N.; Tsakmakis, C. Experimental and theoretical investigation of the effect of kinematic hardening on spherical indentation. Mech. Mater. 1998, 27, 241–248. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Cheng, C.-M.J. Scaling approach to conical indentation in elastic-plastic solids with work hardening. Appl. Phys. 1998, 84, 1284–1291. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Cheng, C.-M. Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int. J. Solids Struct. 1999, 36, 1231–1243. [Google Scholar] [CrossRef]
- Hay, J.C.; Bolshakov, A.; Pharr, G.M. A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 1999, 14, 2296–2305. [Google Scholar] [CrossRef]
- Dao, M.; Chollacoop, N.; Van Vliet, K.J.; Venkatesh, T.A.; Suresh, S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001, 49, 3899–3918. [Google Scholar] [CrossRef]
- Durst, K.; Backes, B.; Göken, M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 2005, 52, 1093–1097. [Google Scholar] [CrossRef]
- Warren, A.W.; Guo, Y.B. Machined surface properties determined by nanoindentation: Experimental and FEA studies on the effects of surface integrity and tip geometry. Surf. Coat. Technol. 2006, 201, 423–433. [Google Scholar] [CrossRef]
- Beghini, M.; Bertini, L.; Fontanari, V. Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 2006, 43, 2441–2459. [Google Scholar] [CrossRef]
- Walter, C.; Antretter, T.; Daniel, R.; Mitterer, C. Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf. Coat. Technol. 2007, 202, 1103–1107. [Google Scholar] [CrossRef]
- Kalidindi, S.R.; Pathak, S. Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 2008, 56, 3523–3532. [Google Scholar] [CrossRef]
- Sakharova, N.A.; Fernandes, J.V.; Antunes, J.M.; Oliveira, M.C. Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. Int. J. Solids Struct. 2009, 46, 1095–1104. [Google Scholar] [CrossRef]
- Wang, Y.; Raabe, D.; Klüber, C.; Roters, F. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 2004, 52, 2229–2238. [Google Scholar] [CrossRef]
- Zaafarani, N.; Raabe, D.; Singh, R.N.; Roters, F.; Zaefferer, S. Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 2006, 54, 1863–1876. [Google Scholar] [CrossRef]
- Casals, O.; Očenášek, J.; Alcalá, J. Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals. Acta Mater. 2007, 55, 55–68. [Google Scholar] [CrossRef]
- Zaafarani, N.; Raabe, D.; Roters, F.; Zaefferer, S. On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 2008, 56, 31–42. [Google Scholar] [CrossRef]
- Alcalá, J.; Casals, O.; Ocenasek, J. Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis. J. Mech. Phys. Solids 2008, 56, 3277–3303. [Google Scholar] [CrossRef]
- Britton, T.B.; Liang, H.; Dunne, F.P.E.; Wilkinson, A.J. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 2010, 466, 695–719. [Google Scholar] [CrossRef]
- Eidel, B. Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal. Acta Mater. 2011, 59, 1761–1771. [Google Scholar] [CrossRef]
- Dahlberg, C.F.O.; Saito, Y.; Öztop, M.S.; Kysar, J.W. Geometrically necessary dislocation density measurements associated with different angles of indentations. Int. J. Plast. 2014, 54, 81–95. [Google Scholar] [CrossRef]
- Dahlberg, C.F.O.; Saito, Y.; Öztop, M.S.; Kysar, J.W. Geometrically necessary dislocation density measurements at a grain boundary due to wedge indentation into an aluminum bicrystal. J. Mech. Phys. Solids 2017, 105, 131–149. [Google Scholar] [CrossRef]
- Fivel, M.; Verdier, M.; Canova, G. 3D simulation of a nanoindentation test at a mesoscopic scale. Mater. Sci. Eng. A 1997, 234–236, 923–926. [Google Scholar] [CrossRef]
- Fivel, M.C.; Robertson, C.F.; Canova, G.R.; Boulanger, L. Three-dimensional modeling of indent-induced plastic zone at a mesoscale. Acta Mater. 1998, 46, 6183–6194. [Google Scholar] [CrossRef]
- Kreuzer, H.G.M.; Pippan, R. Discrete dislocation simulation of nanoindentation: The effect of moving conditions and indenter shape. Mater. Sci. Eng. A 2004, 387–389, 254–256. [Google Scholar] [CrossRef]
- Kreuzer, H.G.M.; Pippan, R. Discrete dislocation simulation of nanoindentation. Comput. Mech. 2004, 33, 292–298. [Google Scholar] [CrossRef]
- Kreuzer, H.G.M.; Pippan, R. Discrete dislocation simulation of nanoindentation: Indentation size effect and the influence of slip band orientation. Acta Mater. 2004, 55, 3229–3235. [Google Scholar] [CrossRef]
- Kreuzer, H.G.M.; Pippan, R. Discrete dislocation simulation of nanoindentation: The effect of statistically distributed dislocations. Mater. Sci. Eng. A 2005, 400, 460–462. [Google Scholar] [CrossRef]
- Widjaja, A.; Van Der Giessen, E.; Needleman, A. Discrete dislocation modeling of submicron indentation. Mater. Sci. Eng. A 2005, 400, 456–459. [Google Scholar] [CrossRef]
- Balint, D.S.; Deshpande, V.; Needleman, A.; Van Der Giessen, E. Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech. Phys. Solids 2006, 54, 2281–2303. [Google Scholar] [CrossRef]
- Widjaja, A.; Van Der Giessen, E.; Deshpande, V.; Needleman, A. Contact area and size effects in discrete dislocation modeling of wedge indentation. J. Mater. Res. 2007, 22, 655–666. [Google Scholar] [CrossRef]
- Rathinam, M.; Thillaigovindan, R.; Paramasivam, P. Nanoindentation of aluminum (100) at various temperatures. J. Mech. Sci. Technol. 2009, 23, 2652–2657. [Google Scholar] [CrossRef]
- Tsuru, T.; Shibutani, Y.; Kaji, Y. Nanoscale contact plasticity of crystalline metal: Experiment and analytical investigation via atomistic and discrete dislocation models. Acta Mater. 2010, 58, 3096–3102. [Google Scholar] [CrossRef]
- Po, G.; Mohamed, M.S.; Crosby, T.; Erel, C.; El-Azab, A.; Ghoniem, N. Recent progress in discrete dislocation dynamics and its applications to micro plasticity. J. Mater. 2014, 66, 2108–2120. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Miller, R.; Philipps, R.; Ortiz, M. Nanoindentation and incipient plasticity. J. Mater. Res. 1999, 14, 2233–2250. [Google Scholar] [CrossRef]
- Smith, G.; Tadmor, E.; Bernstein, N.; Kaxiras, E. Multiscale simulations of silicon nanoindentation. Acta Mater. 2001, 49, 4089–4101. [Google Scholar] [CrossRef]
- Iglesias, R.A.; Leiva, E.P. Two-grain nanoindentation using the quasicontinuum method: Two-dimensional model approach. Acta Mater. 2006, 54, 2655–2664. [Google Scholar] [CrossRef]
- Fanlin, Z.; Yi, S. Quasicontinuum simulation of nanoindentation of nickel film. Acta Mech. Solida Sin. 2006, 19, 283–288. [Google Scholar] [CrossRef]
- Jin, J.; Shevlin, S.; Guo, Z. Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface. Acta Mater. 2008, 56, 4358–4368. [Google Scholar] [CrossRef]
- Jiang, W.G.; Su, J.J.; Feng, X.Q. Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 2008, 75, 4965–4972. [Google Scholar] [CrossRef]
- Li, J.; Ni, Y.; Wang, H.; Mei, J. Effects of crystalline anisotropy and indenter size on nanoindentation by multiscale simulation. Nanoscale Res. Lett. 2009, 5, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Shen, S. Effects of small indenter size and its position on incipient yield loading during nanoindentation. Mater. Sci. Eng. A 2009, 526, 211–218. [Google Scholar] [CrossRef]
- Yu, W.; Shen, S. Multiscale analysis of the effects of nanocavity on nanoindentation. Comput. Mater. Sci. 2009, 46, 425–430. [Google Scholar] [CrossRef]
- Yu, W.; Shen, S. Initial dislocation topologies of nanoindentation into copper (001) film with a nanocavity. Eng. Fract. Mech. 2010, 77, 3329–3340. [Google Scholar] [CrossRef]
- Li, J.; Lu, H.; Ni, Y.; Mei, J. Quasicontinuum study the influence of misfit dislocation interactions on nanoindentation. Comput. Mater. Sci. 2011, 50, 3162–3170. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Ni, Y. Position effect of cylindrical indenter on nanoindentation into Cu thin film by multiscale analysis. Comput. Mater. Sci. 2011, 50, 2987–2992. [Google Scholar] [CrossRef]
- Lu, H.; Ni, Y. Effect of surface step on nanoindentation of thin films by multiscale analysis. Thin Solid Films 2012, 520, 4934–4940. [Google Scholar] [CrossRef]
- Lu, H.; Ni, Y.; Mei, J.; Li, J.; Wang, H. Anisotropic plastic deformation beneath surface step during nanoindentation of fcc al by multiscale analysis. Comput. Mater. Sci. 2012, 58, 192–200. [Google Scholar] [CrossRef]
- Landman, U.; Luedtke, W.; Burnham, N.A.; Colton, R.J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 1990, 248, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Hoover, W.G.; De Groot, A.J.; Hoover, C.G.; Stowers, I.F.; Kawai, T.; Holian, B.L.; Boku, T.; Ihara, S.; Belak, J. Large-scale elastic-plastic indentation simulations via nonequilibrium molecular dynamics. Phys. Rev. A 1990, 42, 5844–5853. [Google Scholar] [CrossRef] [PubMed]
- Kelchner, C.L.; Plimpton, S.J.; Hamilton, J.C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 1998, 58, 11085–11088. [Google Scholar] [CrossRef]
- Zimmerman, J.A.; Kelchner, C.L.; Klein, P.A.; Hamilton, J.C.; Foiles, S.M. Surface step effects on nanoindentation. Phys. Rev. Lett. 2001, 87, 165507. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Van Vliet, K.J.; Zhu, T.; Yip, S.; Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 2002, 418, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Li, J.; Van Vliet, K.J.; Ogata, S.; Yip, S.; Suresh, S.J. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 2004, 52, 691–724. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.Y.; Kim, S.Y.; Jun, S. Atomistic simulations of incipient plasticity under Al (111) nanoindentation. Mech. Mater. 2005, 37, 1035–1048. [Google Scholar] [CrossRef]
- Jang, H.; Farkas, D. Interaction of lattice dislocations with a grain boundary during nanoindentation simulation. Mater. Lett. 2007, 61, 868–871. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Effect of boundary conditions on the MD simulation of nanoindentation. Comput. Mater. Sci. 2014, 95, 626–636. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Large scale atomistic simulation of size effects during nanoindentation: Dislocation length and hardness. Mater. Sci. Eng. A 2015, 634, 20–31. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation. Comput. Mater. Sci. 2016, 111, 64–73. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Role of grain boundary on the sources of size effects. Comput. Mater. Sci. 2016, 117, 315–329. [Google Scholar] [CrossRef]
- Ashby, M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
- Pugno, N.M. A general shape/size-effect law for nanoindentation. Acta Mater. 2007, 55, 1947–1953. [Google Scholar] [CrossRef]
- Ma, Q.; Clarke, D.R. Size dependent hardness of silver single crystals. J. Mater. Res. 1995, 10, 853–863. [Google Scholar] [CrossRef]
- Poole, W.J.; Ashby, M.F.; Fleck, N.A. Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 1996, 34, 559–564. [Google Scholar] [CrossRef]
- McElhaney, K.W.; Valssak, J.J.; Nix, W.D. Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments. J. Mater. Res. 1998, 13, 1300–1306. [Google Scholar] [CrossRef]
- Liu, Y.; Ngan, A.H.W. Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr. Mater. 2001, 44, 237–241. [Google Scholar] [CrossRef]
- McLaughlin, K.K.; Clegg, W.J. Deformation underneath low-load indentations in copper. J. Phys. D 2008, 41, 074007. [Google Scholar] [CrossRef]
- Rester, M.; Motz, C.; Pippan, R. Indentation across size scales: A survey of indentation-induced plastic zones in copper {111} single crystals. Scr. Mater. 2008, 59, 742–745. [Google Scholar] [CrossRef]
- Abu Al-Rub, R.K.; Voyiadjis, G.Z. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 2004, 20, 1139–1182. [Google Scholar] [CrossRef]
- Feng, G.; Nix, W.D. Indentation size effect in MgO. Scr. Mater. 2004, 51, 599–603. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, F.; Hwang, K.C.; Nix, W.D.; Pharr, G.M.; Feng, G. A model for size effects in nanoindentation. J. Mech. Phys. Solids 2006, 54, 1668–1686. [Google Scholar] [CrossRef]
- Soer, W.A.; De Hosson, J.T.M. Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater. Lett. 2005, 59, 3192–3195. [Google Scholar] [CrossRef]
- Cao, Y.; Allameh, S.; Nankivil, D.; Sethiaraj, S.; Otiti, T.; Soboyejo, W. Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness. Mater. Sci. Eng. A 2006, 427, 232–240. [Google Scholar] [CrossRef]
- Hou, X.D.; Bushby, A.J.; Jennett, N.M. Study of the interaction between the indentation size effect and Hall–Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D Appl. Phys. 2008, 41, 074006. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Peters, R. Size effects in nanoindentation: An experimental and analytical study. Acta Mech. 2010, 211, 131–153. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Almasri, A.H.; Park, T. Experimental nanoindentation of BCC metals. Mech. Res. Commun. 2010, 37, 307–314. [Google Scholar] [CrossRef]
- Almasri, A.H.; Voyiadjis, G.Z. Nano-indentation in FCC metals: Experimental study. Acta Mech. 2010, 209, 1–9. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Faghihi, D.; Zhang, C. Analytical and experimental determination of rate-and temperature-dependent length scales using nanoindentation experiments. J. Nanomech. Micromech. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Zhang, C. The mechanical behavior during nanoindentation near the grain boundary in a bicrystal FCC metal. Mater. Sci. Eng. A 2015, 621, 218–228. [Google Scholar] [CrossRef]
- Zhang, C.; Voyiadjis, G.Z. Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal. Mater. Sci. Eng. A 2016, 659, 55–62. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Abu Al-Rub, R.K. Gradient Plasticity Theory with a Variable Length Scale Parameter. Int. J. Solids Struct. 2005, 42, 3998–4029. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Exploring specimen size effects in plastic deformation of Ni3(Al,Ta). Mater. Res. Soc. Symp. Proc. 2003, 753, 27–32. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Uchic, M.D.; Shade, P.A.; Dimiduk, D.M. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 2009, 39, 361–386. [Google Scholar] [CrossRef]
- Kraft, O.; Gruber, P.; Mӧnig, R.; Weygand, D. Plasticity in confined dimensions. Annu. Rev. Mater. Res. 2010, 40, 293–317. [Google Scholar] [CrossRef]
- Parthasarathy, T.A.; Rao, S.I.; Dimiduk, D.M.; Uchic, M.D.; Trinkle, D.R. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 2007, 56, 313–316. [Google Scholar] [CrossRef]
- Rao, S.I.; Dimiduk, D.M.; Tang, M.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 2007, 87, 4777–4794. [Google Scholar] [CrossRef]
- Norfleet, D.M.; Dimiduk, D.M.; Polasik, S.J.; Uchic, M.D.; Mills, M.J. Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 2008, 56, 2988–3001. [Google Scholar] [CrossRef]
- Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 2008, 56, 3245–3259. [Google Scholar] [CrossRef]
- Greer, J.R.; Oliver, W.C.; Nix, W.D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005, 53, 1821–1830. [Google Scholar] [CrossRef]
- Kiener, D.; Pippan, R.; Motz, C.; Kreuzer, H. Microstructural evolution of the deformed volume beneath microindents in tungsten and copper. Acta Mater. 2006, 54, 2801–2811. [Google Scholar] [CrossRef]
- Rester, M.; Motz, C.; Pippan, R. Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 2007, 55, 6427–6435. [Google Scholar] [CrossRef]
- Demir, E.; Raabe, D.; Zaafarani, N.; Zaefferer, S. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 2009, 57, 559–569. [Google Scholar] [CrossRef]
- Yang, W.; Larson, B.C.; Pharr, G.M.; Ice, G.E.; Budai, J.D.; Tischler, J.Z.; Liu, W. Deformation microstructure under microindents in single-crystal Cu using three-dimensional X-ray structural microscopy. J. Mater. Res. 2004, 19, 66–72. [Google Scholar] [CrossRef]
- Larson, B.C.; El-Azab, A.; Yang, W.; Tischler, J.Z.; Liu, W.; Ice, G.E. Experimental characterization of the mesoscale dislocation density tensor. Philos. Mag. 2007, 87, 1327–1347. [Google Scholar] [CrossRef]
- Larson, B.C.; Tischler, J.Z.; El-Azab, A.; Liu, W. Dislocation density tensor characterization of deformation using 3D X-ray microscopy. J. Eng. Mater. Technol. 2008, 130, 021024. [Google Scholar] [CrossRef]
- Feng, G.; Budiman, A.S.; Nix, W.D.; Tamura, N.; Patel, J.R. Indentation size effects in single crystal copper as revealed by synchrotron X-ray microdiffraction. J. Appl. Phys. 2008, 104, 043501. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Derlet, P.M.; Van Swygenhoven, H. Interaction between dislocations and grain boundaries under an indenter–a molecular dynamics simulation. Acta Mater. 2004, 52, 2251–2258. [Google Scholar] [CrossRef]
- Kulkarni, Y.; Asaroa, R.J.; Farkas, D. Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scr. Mater. 2009, 60, 532–535. [Google Scholar] [CrossRef]
- Nair, A.K.; Parker, E.; Gaudreau, P.; Farkas, D.; Kriz, R.D. Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study. Int. J. Plast. 2008, 24, 2016–2031. [Google Scholar] [CrossRef]
- Peng, P.; Liao, G.; Shi, T.; Tang, Z.; Gao, Y. Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl. Surf. Sci. 2010, 256, 6284–6290. [Google Scholar] [CrossRef]
- Sun, K.; Shen, W.; Ma, L. The influence of residual stress on incipient plasticity in single-crystal copper thin film under nanoindentation. Comput. Mater. Sci. 2014, 81, 226–232. [Google Scholar] [CrossRef]
- Szlufarska, I. Atomistic simulations of nanoindentation. Mater. Today 2006, 9, 42–50. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef]
- Baskes, M.I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 1992, 46, 2727–2742. [Google Scholar] [CrossRef]
- Medyanik, S.N.; Shao, S. Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput. Mater. Sci. 2009, 45, 1129–1133. [Google Scholar] [CrossRef]
- Shao, S.; Medyanik, S.N. Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 2010, 37, 315–319. [Google Scholar] [CrossRef]
- Saraev, D.; Miller, R.E. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Mater. 2006, 54, 33–45. [Google Scholar] [CrossRef]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Stukowski, A.; Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Gao, Y.; Ruestes, C.J.; Tramontina, D.R.; Urbassek, H.M. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Solids 2015, 75, 58–75. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Walley, S.M. High strain rate properties of metals and alloys. Int. Mater. Rev. 2008, 53, 105–128. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Li, Q. Dislocation mechanics of high-rate deformations. Metall. Mater. Trans. A 2015, 46, 4438–4453. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Size Effects in FCC Crystals During the High Rate Compression Test. Acta Mater. 2016, 121, 190–201. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Size and Strain Rate Effects in Metallic Samples of Confined Volumes: Dislocation Length Distribution. Scr. Mater. 2017, 130, 182–186. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Microstructural investigation of the hardening mechanism in FCC crystals during high rate deformations. Comput. Mater. Sci. 2017, 138, 10–15. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voyiadjis, G.Z.; Yaghoobi, M. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals 2017, 7, 321. https://doi.org/10.3390/cryst7100321
Voyiadjis GZ, Yaghoobi M. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals. 2017; 7(10):321. https://doi.org/10.3390/cryst7100321
Chicago/Turabian StyleVoyiadjis, George Z., and Mohammadreza Yaghoobi. 2017. "Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation" Crystals 7, no. 10: 321. https://doi.org/10.3390/cryst7100321
APA StyleVoyiadjis, G. Z., & Yaghoobi, M. (2017). Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals, 7(10), 321. https://doi.org/10.3390/cryst7100321