The Effect of the Vertex Angles of Wedged Indenters on Deformation during Nanoindentation
Abstract
:1. Introduction
2. Methodology and Simulation Model of Nanoindentation
3. Results and Discussion
3.1. Load-Displacement Responses
3.1.1. Load-Displacement Responses during Different Loading Processes
3.1.2. Load-Displacement Responses during Different Unloading Processes
3.2. Atom Configurations of Dislocation Nucleation and Emission
3.2.1. Atomic Configurations during Nanoindentation Using the Indenter with Half Vertex Angle of 60°
3.2.2. Atomic Configurations during Nanoindentation Using the Indenter with Half Vertex Angle of 70°
3.3. Contact Hardness Responses
3.4. Strain Energy-Displacement Responses
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Pethicai, J.B.; Hutchings, R.; Oliver, W.C. Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 2006, 48, 593–606. [Google Scholar] [CrossRef]
- Tao, S.; Li, D.Y. Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology 2006, 17, 65–78. [Google Scholar] [CrossRef]
- Krauss, A.R.; Auciello, O.; Gruen, D.M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.C.; Moldovan, N.; Erdemir, A.; Ersoy, D.; et al. Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diam. Relat. Mater. 2001, 10, 1952–1961. [Google Scholar] [CrossRef]
- Schuh, C.A.; Mason, J.K.; Lund, A.C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 2005, 4, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Schuh, C.A.; Packard, C.E.; Lund, A.C. Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 2006, 21, 725–736. [Google Scholar] [CrossRef]
- Ge, D.; Minor, A.M.; Stach, E.A.; Morris, J.W. Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 2006, 86, 4069–4080. [Google Scholar] [CrossRef]
- Korte, S.; Stearn, R.J.; Wheeler, J.M.; Clegg, W.J. High temperature microcompression and nanoindentation in vacuum. J. Mater. Res. 2012, 27, 167–176. [Google Scholar] [CrossRef]
- Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A. Finite-element modeling of nanoindentation. J. Appl. Phys. 1999, 85, 1460–1474. [Google Scholar] [CrossRef]
- Jha, K.K.; Zhang, S.; Suksawang, N.; Wang, T.L.; Agarwal, A. Work-of-indentation as a means to characterize indenter geometry and load-displacement response of a material. J. Phys. D Appl. Phys. 2013, 46, 415501. [Google Scholar] [CrossRef]
- Landman, U.; Luedtke, W.D.; Burnham, N.A.; Colton, R.J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 1990, 248, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Jian, S.R.; Lai, Y.S.; Yang, P.F. Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon. Nanoscale Res. Lett. 2008, 3, 71–75. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Jiang, M.Q.; Dai, L.H.; Yao, Y.G. Atomistic origin of rate-dependent serrated plastic flow in metallic glasses. Nanoscale Res. Lett. 2008, 3, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.B.; Ni, Y.S. Effect of surface step on nanoindentation of thin films by multiscale analysis. Thin Solid Films 2012, 520, 4934–4940. [Google Scholar] [CrossRef]
- Lu, H.B.; Ni, Y.S.; Mei, J.F.; Li, J.W.; Wang, H.S. Anisotropic plastic deformation beneath surface step during nanoindentation of FCC Al by multiscale analysis. Comput. Mater. Sci. 2012, 58, 192–200. [Google Scholar] [CrossRef]
- Zhu, A.B.; He, D.Y.; He, R.J.; Zou, C. Nanoindentation simulation on single crystal copper by quasi-continuum method. Mater. Sci. Eng. A-Struct. 2016, 674, 76–81. [Google Scholar] [CrossRef]
- Mei, J.F.; Ni, Y.S. The study of anisotropic behavior of nano-adhesive contact by multiscale simulation. Thin Solid Films 2014, 566, 45–53. [Google Scholar] [CrossRef]
- Zeng, F.L.; Zhao, B.; Sun, Y. Multiscale simulation of incipient plasticity and dislocation nucleation on nickel film during tilted flat-ended nanoindentation. Acta Mech. Solida Sin. 2015, 28, 484–496. [Google Scholar] [CrossRef]
- Dugdale, D.S. Wedge indentation experiments with cold-worked metals. J. Mech. Phys. Solids 1953, 2, 14–26. [Google Scholar] [CrossRef]
- Prasad, K.E.; Chollacoop, N.; Ramamurty, U. Role of indenter angle on the plastic deformation underneath a sharp indenter and on representative strains: An experimental and numerical study. Acta Mater. 2011, 59, 4343–4355. [Google Scholar] [CrossRef]
- Zeng, F.L.; Sun, Y.; Liu, Y.Z.; Zhou, Y. Multiscale simulations of wedged nanoindentation on nickel. Comput. Mater. Sci. 2012, 62, 47–54. [Google Scholar] [CrossRef]
- Ercolessi, F.; Adams, J.B. Interatomic potentials from first-principles calculations: The force-matching method. EPL-Europhys. Lett. 1994, 26, 583–588. [Google Scholar] [CrossRef]
- Shenoy, V.B.; Miller, R.; Tadmor, E.B.; Rodney, D.; Phillips, R.; Ortiz, M. An adaptive finite element approach to atomic-scale mechanics—The quasicontinuum method. J. Mech. Phys. Solids 1999, 47, 611–642. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Miller, R.; Phillips, R.; Ortiz, M. Nanoindentation and incipient plasticity. J. Mater. Res. 1999, 14, 2233–2250. [Google Scholar] [CrossRef]
- Li, J.W.; Ni, Y.S.; Wang, H.S.; Mei, J.F. Effects of crystalline anisotropy and indenter size on nanoindentation by multiscale simulation. Nanoscale Res. Lett. 2010, 5, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Huang, Y.; Nix, W.D.; Jiang, H.; Zhang, F.; Hwang, K.C. Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments. J. Mater. Res. 2004, 19, 3423–3434. [Google Scholar] [CrossRef]
- Cross, G.; Schirmeisen, A.; Stalder, A.; Grutter, P.; Tschudy, M.; Durig, U. Adhesion interaction between atomically defined tip and sample. Phys. Rev. Lett. 1998, 80, 4685–4688. [Google Scholar] [CrossRef]
- Rubio, G.; Agrait, N.; Vieira, S. Atomic-sized metallic contacts: Mechanical properties and electronic transport. Phys. Rev. Lett. 1996, 76, 2302–2305. [Google Scholar] [CrossRef] [PubMed]
- Stalder, A.; Durig, U. Study of yielding mechanics in nanometer-sized Au contacts. Appl. Phys. Lett. 1996, 68, 637–639. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Chapter 1—Defects in crystals. In Introduction to Dislocations, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2011; pp. 1–20. [Google Scholar]
- Hull, D.; Bacon, D.J. Chapter 5—Dislocations in face-centered cubic metals. In Introduction to Dislocations, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2011; pp. 85–107. [Google Scholar]
- Ashby, M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
- Chaudhri, M.M. Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 1998, 46, 3047–3056. [Google Scholar] [CrossRef]
- Srikant, G.; Chollacoop, N.; Ramamurty, U. Plastic strain distribution underneath a Vickers Indenter: Role of yield strength and work hardening exponent. Acta Mater. 2006, 54, 5171–5178. [Google Scholar] [CrossRef]
- Tabor, D. The hardness of solids. Rev. Phys. Technol. 1970, 1, 145. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Alhafez, I.A.; Brodyanski, A.; Kopnarski, M.; Urbassek, H.M. Influence of tip geometry on nanoscratching. Tribol. Lett. 2017, 65, 1–13. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1997, 46, 411–425. [Google Scholar] [CrossRef]
- Manika, I.; Maniks, J. Size effects in micro- and nanoscale indentation. Acta Mater. 2006, 54, 2049–2056. [Google Scholar] [CrossRef]
- Durst, K.; Goken, M.; Pharr, G.M. Indentation size effect in spherical and pyramidal indentations. J. Phys. D Appl. Phys. 2008, 41, 074005. [Google Scholar] [CrossRef]
- Pharr, G.M.; Herbert, E.G.; Gao, Y.F. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. In Annual Review Of Materials Research; Clarke, D.R., Ruhle, M., Zok, F., Eds.; Annual Reviews: Palo Alto, CA, USA, 2010; Volume 40, pp. 271–292. [Google Scholar]
- Ma, L.; Morris, D.J.; Jennerjohn, S.L.; Bahr, D.F.; Levine, L.E. The role of probe shape on the initiation of metal plasticity in nanoindentation. Acta Mater. 2012, 60, 4729–4739. [Google Scholar] [CrossRef]
Half Vertex Angle of Wedged Indenter | Critical Hardness (GPa) |
---|---|
α = 60° | 7.018 |
α = 70° | 7.295 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Ni, Y. The Effect of the Vertex Angles of Wedged Indenters on Deformation during Nanoindentation. Crystals 2017, 7, 380. https://doi.org/10.3390/cryst7120380
Hu X, Ni Y. The Effect of the Vertex Angles of Wedged Indenters on Deformation during Nanoindentation. Crystals. 2017; 7(12):380. https://doi.org/10.3390/cryst7120380
Chicago/Turabian StyleHu, Xiaowen, and Yushan Ni. 2017. "The Effect of the Vertex Angles of Wedged Indenters on Deformation during Nanoindentation" Crystals 7, no. 12: 380. https://doi.org/10.3390/cryst7120380
APA StyleHu, X., & Ni, Y. (2017). The Effect of the Vertex Angles of Wedged Indenters on Deformation during Nanoindentation. Crystals, 7(12), 380. https://doi.org/10.3390/cryst7120380