Defects in Static Elasticity of Quasicrystals
Abstract
:1. Introduction
2. Fundamental Equations of Quasicrystals
2.1. The Elasticity of One-Dimensional Hexagonal Quasicrystals
2.2. The Elasticity of Two-Dimensional Quasicrystals
2.3. The Elasticity of Three-Dimensional Quasicrystals
3. Some Examples
3.1. Complex Variable Theory for Elasticity of Quasicrystals with Defects
3.2. An Extended Dugdale model for Anti-Plane Quasicrystals
3.3. An Extended Dugdale Model for Plane Problem of Two-Dimensional Quasicrystals
3.4. An Elastic Problem of Plane Problem of Two-Dimensional Quasicrystals with Elliptical Hole with Double Cracks
An Extended Dugdale Model for Plane Problems of Three-Dimensional Icosahedral Quasicrystal
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef]
- Ohashi, W.; Spaepen, F. Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology. Nature 1987, 330, 555–556. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.; Kuo, K.H. Two-dimensional quasicrystal with eightfold rotational symmetry. Phys. Rev. Lett. 1987, 59, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
- Janot, C. The structure of quasicrystals. J. Non-Cryst. Solids 1993, 156–158, 852–864. [Google Scholar] [CrossRef]
- Ishimasa, T.; Nissen, H.U. New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett. 1985, 55, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.C.; Lu, G. Experimental evidence for and a projection model of a cubic quasicrystal. J. Phys. Condens. Matter 1990, 2, 9749–9755. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.Z.; Zhang, Z.; Kuo, K.H. One-dimensional quasicrystals with twolvefold rotational symmetry. Phys. Rev. Lett. 1998, 60, 1645–1648. [Google Scholar] [CrossRef] [PubMed]
- Bohsung, J.; Trebin, H.R. Disclinations in quasicrystals. Phys. Rev. Lett. 1987, 58, 1204–1207. [Google Scholar] [CrossRef] [PubMed]
- Ebert, P.H.; Feuerbacher, M.; Tamura, N. Evidence for a cluster-based on structure of Al-Pd-Mn single quasicrystals. Phys. Rev. Lett. 1996, 77, 3827–3830. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Liu, Y.Y. Low-temperature lattice excitation of icosahedral Al-Mn-Pd quasicrystals. Phys. Rev. B 2001, 63, 064203. [Google Scholar] [CrossRef]
- Rochal, S.B.; Lorman, V.L. Anisotropy of acoustic-phonon properties of an icosahedral quasicrystal at high temperature due to phonon-phason coupling. Phys. Rev. B 2000, 62, 849–874. [Google Scholar] [CrossRef]
- Bak, P. Phenomenological theory of icosahedral in commensurate (quasiperiodic) order in Mn-Al alloys. Phys. Rev. Lett. 1985, 54, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Bak, P. Symmetry, stability and elastic properties of icosahedral in commensurate crystals. Phys. Rev. B 1985, 32, 5764–5772. [Google Scholar] [CrossRef]
- Socolar, J.E.S.; Lubensky, T.C.; Steinhardt, P.J. Phonons, phasons and dislocations in quasicrystals. Phys. Rev. B 1986, 34, 3345–3360. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon Press: New York, NY, USA, 1958. [Google Scholar]
- Capriz, G. Continuous Media with Microstructure; Springer Verlag: Berlin, Germany, 1989. [Google Scholar]
- Mariano, P.M. Multifield theories in mechanics of solids. Adv. Appl. Mech. 2002, 38, 1–93. [Google Scholar]
- Mariano, P.M. Mechanics of material mutations. Adv. Appl. Mech. 2014, 47, 1–91. [Google Scholar]
- Edagawa, K. Phonon-phason coupling in decagonal quasicrystals. Philos. Mag. 2007, 87, 2789–2798. [Google Scholar] [CrossRef]
- Cheminkov, M.A.; Ott, H.R.; Bianchi, A.; Migliori, A.; Darling, T.W. Elastic Moduli of a Single Quasicrystal of Decagonal Al-Ni-Co: Evidence for transverse elastic isotropy. Phys. Rev. Lett. 1998, 80, 321–324. [Google Scholar]
- Tanaka, K.; Mitarai, Y.; Koiwa, M. Elastic constants of Al-based icosahedral quasicrystals. Philos. Mag. A 1996, 73, 1715–1723. [Google Scholar] [CrossRef]
- Ding, D.H.; Yang, W.G.; Hu, C.Z. Generalized elasticity theory of quasicrystals. Phys. Rev. B 1993, 48, 7003–7010. [Google Scholar] [CrossRef]
- Hu, C.Z.; Wang, R.H.; Ding, D.H. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 2000, 63, 1–39. [Google Scholar] [CrossRef]
- Jeong, H.C.; Steinhardt, P.J. Finite-temperature elasticity phase transition in decagonal quasicrystals. Phys. Rev. B 1993, 48, 9394–9403. [Google Scholar] [CrossRef]
- Fan, T.Y.; Mai, Y.W. Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystalline materials. Appl. Mech. Rev. 2004, 57, 325–344. [Google Scholar] [CrossRef]
- Fan, T.Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications; Springer Press: Heideberg, Germany, 2010. [Google Scholar]
- Levine, D.; Lubensky, T.C.; Ostlund, S. Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 1985, 54, 1520–1523. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Duan, X.Y.; Fan, T.Y. Elastic field for a straight dislocation in a decagonal quasicrystal. J. Phys.-Condens. Matter 1999, 11, 703–711. [Google Scholar] [CrossRef]
- Li, X.F.; Fan, T.Y.; Sun, Y.F. A decagonal quasicrystal with a Griffith crack. Philos. Mag. A 1999, 79, 1943–1952. [Google Scholar]
- Chen, W.Q.; Ma, Y.L.; Ding, H.J. On three-dimensional elastic problems of one dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 2004, 31, 633–641. [Google Scholar] [CrossRef]
- Liu, G.T.; Fan, T.Y.; Guo, R.P. Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals. Int. J. Solids Struct. 2004, 41, 3949–3959. [Google Scholar] [CrossRef]
- Li, L.H.; Fan, T.Y. Complex function method for solving notch problem of point 10 two-dimensional quasicrystal based on the stress potential function. J. Phys.-Condens Matter 2006, 18, 10631–10641. [Google Scholar] [CrossRef]
- Wang, X.; Pan, E. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana-J. Phys. 2008, 70, 911–933. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, S.P.; Zhao, B.S. Boundary conditions for plate bending in one dimensional hexagonal quasicrystals. J. Elast. 2007, 86, 221–233. [Google Scholar] [CrossRef]
- Gao, Y.; Ricoeur, A. The refined theory of one-dimensional quasi-crystals in thick plate structures. J. Appl. Mech. 2011, 78, 031021. [Google Scholar] [CrossRef]
- Coddens, G. On the problem of the relation between phason elasticity and phason dynamics in quasicrystals. Eur. Phys. J. B 2004, 54, 37–65. [Google Scholar] [CrossRef]
- Wang, J.B.; Mancini, L.; Wang, R.H.; Gastaldi, J. Phonon- and phason-type spherical inclusions in icosahedral quasicrystals. J. Phys.-Condens. Matter 2003, 15, L363–L370. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, Z.Y.; Xing, Y.M. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philos. Mag. 2016, 96, 349–369. [Google Scholar] [CrossRef]
- Radi, E.; Mariano, P.M. Stationary straight cracks in quasicrystals. Int. J. Fract. 2010, 166, 102–120. [Google Scholar] [CrossRef]
- Radi, E.; Mariano, P.M. Steady-state propagation of dislocations in quasi-crystals. Proc. R. Soc. A-Math. Phys. 2011, 467, 3490–3508. [Google Scholar] [CrossRef]
- Mariano, P.M.; Planas, J. Phason self-actions in quasicrystals. Physica D 2013, 249, 24946–24957. [Google Scholar] [CrossRef]
- Li, X.Y. Fundamental solutions of penny-shaped and half infinite plane cracks embedded in an infinite space of one dimensional hexagonal quasi-crystal under thermal loading. Proc. R. Soc. A-Math. Phys. 2013, 469, 20130023. [Google Scholar] [CrossRef]
- Li, X.Y. Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 2012, 376, 2004–2009. [Google Scholar] [CrossRef]
- Li, X.Y. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct. 2014, 51, 1442–1455. [Google Scholar] [CrossRef]
- Li, W.; Chai, Y.Z. Anti-plane problem analysis for icosahedral quasicrystals under shear loadings. Chin. Phys. B 2014, 23, 116201. [Google Scholar] [CrossRef]
- Sladek, J.; Sladek, V.; Pan, E. Bending analyses of 1D orthorhombic quasicrystal plates. Int. J. Solids Struct. 2013, 50, 3975–3983. [Google Scholar] [CrossRef]
- Wollgarten, M.; Beyss, M.; Urban, K.; Liebertz, H.; Koster, U. Direct evidence for plastic deformation of quasicrystals by means of a dislocationmechanism. Phys. Rev. Lett. 1993, 71, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Feuerbacher, M.; Bartsch, M.; Grushko, B.; Messerschmidt, U.; Urban, K. Plastic deformation of decagonal Al-Ni-Co quasicrystals. Philos. Mag. Lett. 1997, 76, 369–376. [Google Scholar] [CrossRef]
- Messerschmidt, U.; Bartsch, M.; Feuerbacher, M.; Geyer, B.; Urban, K. Friction mechanism of dislocation motion in icosahedral Al-Pd-Mn quasicrystals. Philos. Mag. A 1999, 79, 2123–2135. [Google Scholar] [CrossRef]
- Schall, P.; Feuerbacher, M.; Bartsch, M.; Messerschmidt, U.; Urban, K. Dislocation density evolution upon plastic deformation of Al-Pd-Mn single quasicrystals. Philos. Mag. Lett. 1999, 79, 785–796. [Google Scholar] [CrossRef]
- Geyer, B.; Bartsch, M.; Feuerbacher, M.; Urban, K.; Messerschmidt, U. Plastic deformation of icosahedral Al-Pd-Mn single quasicrystals I. Experimental results. Philos. Mag. A 2000, 80, 1151–1163. [Google Scholar] [CrossRef]
- Rosenfeld, R.; Feuerbacher, M. Study of plastically deformed icosahedral Al-Pd-Mn single quasicrystals by transmission electron microscopy. Philos. Mag. Lett. 1995, 72, 375–784. [Google Scholar] [CrossRef]
- Caillard, D.; Vanderschaeve, G.; Bresson, L.; Gratias, D. Transmission electron microscopy study of dislocations and extended defects in as-grown icosahedral Al-Pd-Mn single grains. Philos. Mag. A 2000, 80, 237–253. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Lu, J.; Li, W. Defects in Static Elasticity of Quasicrystals. Crystals 2017, 7, 373. https://doi.org/10.3390/cryst7120373
Xu Q, Lu J, Li W. Defects in Static Elasticity of Quasicrystals. Crystals. 2017; 7(12):373. https://doi.org/10.3390/cryst7120373
Chicago/Turabian StyleXu, Qin, Jing Lu, and Wu Li. 2017. "Defects in Static Elasticity of Quasicrystals" Crystals 7, no. 12: 373. https://doi.org/10.3390/cryst7120373
APA StyleXu, Q., Lu, J., & Li, W. (2017). Defects in Static Elasticity of Quasicrystals. Crystals, 7(12), 373. https://doi.org/10.3390/cryst7120373