Formation of Quasicrystalline Phases and Their Close Approximants in Cast Al-Mn Base Alloys Modified by Transition Metals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Samples with Cr and Co Addition
3.2. Sample with Ni Addition
3.3. Sample with Cu Addition
4. Summary
Acknowledgments
Conflicts of Interest
References
- Inoue, A.; Kimura, H.; Sasamori, K.; Masumoto, T. High mechanical strength of Al-(V, Cr,Mn)-(Fe, Co-Ni) quasicrystalline alloys prepared by rapid solidification. Mater. Trans. JIM 1996, 37, 1287–1292. [Google Scholar] [CrossRef]
- Inoue, A.; Kimura, H.; Yamaura, S. Production and mechanical properties of aluminum alloys with dispersed nanoscale quasicrystalline and amorphous particles. Met. Mater. Int. 2003, 9, 527–536. [Google Scholar] [CrossRef]
- Galano, M.; Audebert, F.; Escorial, A.G.; Stone, I.C.; Cantor, B. Nanoquasicrystalline Al–Fe–Cr-based alloys. Part II. Mechanical properties. Acta Mater. 2009, 57, 5120–5130. [Google Scholar] [CrossRef]
- Watson, T.J.; Gordillo, M.A.; Cernatescu, I.; Aindow, M. Structure and mechanical properties in a powder-processed icosahedral-phase-strengthened aluminum alloy. Scr. Mater. 2016, 123, 51–54. [Google Scholar] [CrossRef]
- Pedrazzini, S.; Galano, M.; Audebert, F.; Collins, D.M.; Hofmann, F.; Abbey, B.; Korsunsky, A.M.; Lieblich, M.; Escorial, A.G.; Smith, W.G.D. Strengthening mechanisms in an Al-Fe-Cr-Ti nano-quasicrystalline alloy and composites. Mater. Sci. Eng. A 2016, 672, 175–183. [Google Scholar] [CrossRef]
- Tsai, A.P.; Aoki, K.; Inoue, A.; Masumoto, T. Synthesis of stable quasicrystalline particledispersed Al base composite alloys. J. Mater. Res. 1993, 8, 5–7. [Google Scholar] [CrossRef]
- Kaloshkin, S.D.; Tcherdyntsev, V.V.; Laptev, A.I.; Stepashkin, A.A.; Afonina, E.A.; Pomadchik, A.L.; Bugakov, V.I. Structure and mechanical properties of mechanically alloyed Al/Al-Cu-Fe composites. J. Mater. Sci. 2004, 39, 5399–5402. [Google Scholar] [CrossRef]
- Lityńska-Dobrzyńska, L.; Mitka, M.; Góral, A.; Stan-Głowińska, K.; Dutkiewicz, J. Microstructure and mechanical properties of aluminium matrix composites reinforced by Al62Cu25.5Fe12.5 melt spun ribbon. Mater. Charact. 2016, 117, 127–133. [Google Scholar] [CrossRef]
- Beeli, C.; Ishimasa, T.; Nissen, H.U. Orientation relation between icosahedral and crystalline phases in Al-Mn alloys. Philos. Mag. B 1988, 57, 599–608. [Google Scholar] [CrossRef]
- Ohashi, T.; Fukatsu, N.; Asai, K. Crystallization and precipitation structures of quasicrystalline phase in rapidly solidified Al-Mn-X ternary alloys. J. Mater. Sci. 1989, 24, 3717–3724. [Google Scholar] [CrossRef]
- Yamasaki, M.; Nagaishi, Y.; Kawamura, Y. Inhibition of Al grain coarsening by quasicrystalline icosahedral phase in the rapidly solidified powder metallurgy Al-Fe-Ti-Cr. Scr. Mater. 2007, 56, 785–788. [Google Scholar] [CrossRef]
- Chlupova, A.; Chlup, Z.; Kruml, T. Fatigue properties and microstructure of quasicrystalline AlFeCrTi alloy. Int. J. Fatigue 2016, 91, 251–256. [Google Scholar] [CrossRef]
- Pedrazzini, S.; Galano, M.; Audebert, F.; Smith, G.D.W. Elevated Temperature Mechanical Behaviour of Nanoquasicrystalline Al93Fe3Cr2Ti2 Alloy and Composites. Mater. Sci. Eng. A 2017. [Google Scholar] [CrossRef]
- Stan-Głowińska, K.; Lityńska-Dobrzyńska, L.; Kania, B.; Dutkiewicz, J.; Rogal, Ł.; Skuza, W.; Wojewoda-Budka, J.; Gordillo, M.A.; Wiezorek, J.M. Effects of hot-compaction on the structure and properties of Al-Mn-Fe-X alloys strengthened with quasi-crystalline icosahedral phase. Mater. Des. 2017, 126, 162–173. [Google Scholar] [CrossRef]
- Davis, J.R. (Ed.) Selection and application of aluminum alloys. In Aluminum and Aluminum Alloys; ASM International: Materials Park, OH, USA, 1993; pp. 59–198. [Google Scholar]
- Chang, H.J.; Fleury, E.; Song, G.S.; Lee, M.H.; Kim, W.T.; Kim, D.H. Microstructure modification and quasicrystalline phase formation in Al–Mn–Si–Be cast alloys. Mater. Sci. Eng. A 2004, 375–377, 992–997. [Google Scholar] [CrossRef]
- Chang, H.J.; Fleury, E.; Song, G.S.; Kim, W.T.; Kim, D.H. Formation of quasicrystalline phases in Al-rich Al–Mn–Be alloys. J. Non-Cryst. Solids 2004, 334–335, 12–16. [Google Scholar] [CrossRef]
- Boncina, T.; Markoli, B.; Zupanic, F. Characterization of cast Al86Mn3Be11 alloy. J. Microsc. 2009, 233, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Song, G.S.; Fleury, E.; Kim, S.H.; Kim, W.T.; Kim, D.H. Enhancement of the quasicrystal forming ability in Al-based alloys by Be-addition. J. Alloys Compd. 2002, 342, 251–255. [Google Scholar] [CrossRef]
- Kang, H.; Li, X.; Wang, T.; Liu, D.; Su, Y.; Hu, Z.; Guo, J.; Fua, H. Crystal–quasicrystal transition depending on cooling rates in directionally solidified Al–3Mn–7Be (at.%) alloy. Intermetallics 2014, 44, 101–105. [Google Scholar] [CrossRef]
- Ryan, R.P.; Terry, C.; Leffingwell, S.S.; Beryllium; Ryan, I.R.P.; Terry, C.; Leffingwell, S.S. (Eds.) Toxicology Desk Reference: The Toxic Exposure & Medical Monitoring Index, 5th ed.; Taylor & Francis: New York, NY, USA, 1999; pp. 185–190. [Google Scholar]
- Inoue, A.; Watanabe, M.; Kimura, H.; Takahashi, F.; Nagata, A.; Masumoto, T. High mechanical strength of qua-sicrystalline phase surrounded by fcc-Al phase in rapidly solidified Al–Mn–Ce alloys. Mater. Trans. JIM 1992, 33, 723–729. [Google Scholar] [CrossRef]
- Schurack, F.; Eckert, J.; Schultz, L. Synthesis and mechanical properties of cast quasicrystal-reinforced Al-alloys. Acta Mater. 2001, 49, 1351–1361. [Google Scholar] [CrossRef]
- Coury, F.G.; Botta, W.J.; Bolfarini, C.; Kiminami, C.S.; Kaufman, M.J. Reassessment of the effects of Ce on quasicrystal formation and microstructural evolution in rapidly solidified Al–Mn alloys. Acta Mater. 2015, 98, 221–228. [Google Scholar] [CrossRef]
- Naglic, I.; Samardzija, Z.; Delijic, K.; Kobe, S.; Dubois, J.M.; Leskovar, B.; Markoli, B. Metastable quasicrystals in Al–Mn alloys containing copper, magnesium and silicon. J. Mater. Sci. 2017, 52, 13657–13668. [Google Scholar] [CrossRef]
- Stan-Głowińska, K.; Rogal, L.; Góral, A.; Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Schell, N.; Lityńska-Dobrzyńska, L. Formation of a quasicrystalline phase in Al-Mn base alloys cast at intermediate cooling rates. J. Mater. Sci. 2017, 52, 7794–7807. [Google Scholar] [CrossRef]
- Stan-Głowińska, K.; Lityńska-Dobrzyńska, L.; Rogal, Ł. Influence of Fe addition on the formation of a quasicrystalline phase in bulk Al-rich Al-Mn base alloys. Mater. Charact. 2017, 128, 203–208. [Google Scholar] [CrossRef]
- Zhou, W.L.; Li, X.Z.; Kuo, K.H. A new hexagonal metastable phase coexisting with the decagonal quasicrystal in Al-Cr-Ni and Al-Mn-Ni alloys. Scr. Metall. Mater. 1989, 23, 1571–1574. [Google Scholar] [CrossRef]
- Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.; Ranganathan, S. Quasi-crystals and their crystalline homologues in the Al60Mn11Ni4 ternary alloy. J. Microsc. 1988, 149, 1–19. [Google Scholar] [CrossRef]
- Grushko, B.; Pavlyuchkov, D.; Mi, S.B.; Balanetskyy, S. Ternary phases forming adjacent to Al3Mn-Al4Mn in Al-Mn-TM (TM = Fe, Co, Ni, Cu, Zn, Pd). J. Alloy Compd. 2016, 677, 148–162. [Google Scholar] [CrossRef]
- Khoruzha, V.G.; Kornienko, K.E.; Pavlyuchkov, D.V.; Grushko, B.; Velikanova, T.Y. The Al–Cr–Fe phase diagram. I. phase equilibria at subsolidus temperatures over composition range 58–100 at.% Al. Powder Metall. Met. Ceram. 2011, 50, 83–97. [Google Scholar] [CrossRef]
- Balanetskyy, S.; Pavlyuchkov, D.; Velikanova, T.; Grushko, B. The Al-rich region of the Al–Fe–Mn alloy system. J. Alloy Compd. 2015, 619, 211–220. [Google Scholar] [CrossRef]
- Grushko, B.; Mi, S.B. Al-rich region of Al-Cu-Mn. J. Alloy Compd. 2016, 688, 957–963. [Google Scholar] [CrossRef]
- Balanetskyy, S.; Meisterernst, G.; Grushko, B.; Feuerbacher, M. The Al-rich region of the Al–Mn–Ni alloy system. Part II. Phase equilibria at 620–1000 °C. J. Alloy Compd. 2011, 50, 3795–3805. [Google Scholar] [CrossRef]
- Tsai, A.; Inoue, A.; Masumoto, T. A Stable Quasicrystal in Al-Cu-Fe System. J. Appl. Phys. 1987, 26, L1505. [Google Scholar] [CrossRef]
- Gayle, F.; Shapiro, A.J.; Biancaniello, F.S.; Boettinger, W. The Al-Cu-Fe phase diagram: 0 to 25 At. pct Fe and 50. Metall. Mater. Trans. A 1992, 2, 2409–2417. [Google Scholar] [CrossRef]
- Zhang, L.; Lück, R. Phase equilibria of the icosahedral Al–Cu–Fe phase. J. Alloy Compd. 2002, 342, 53–56. [Google Scholar] [CrossRef]
Alloy Designation | Composition (at.%) | ||
---|---|---|---|
Al | Mn | X | |
94Al-4Mn-2Cr | 93.7 ± 1.9 | 4.2 ± 0.4 | 2.1 ± 0.4 |
94Al-4Mn-2Co | 93.5 ± 1.9 | 4.5 ± 0.5 | 2.0 ± 0.4 |
94Al-4Mn-2Ni | 93.7 ± 1.9 | 3.9 ± 0.4 | 2.4 ± 0.5 |
94Al-4Mn-2Cu | 93.1 ± 1.9 | 4.3 ± 0.4 | 2.6 ± 0.5 |
Alloy Designation | Phase Composition for Zone A (up to 1 mm Thickness) | HV (1 mm Rod) |
---|---|---|
94Al-6Mn | Al, L-phase | 116 ± 16 |
94Al-4Mn-2Cr | Al, L-phase, Al45Cr7, Al12(Mn, Cr) | 130 ± 16 |
94Al-4Mn-2Co | Al, Al9(Mn, Ni)2, H-phase | 107 ± 5 |
94Al-4Mn-2Ni | Al, Al9(Mn, Ni)2, O-phase, nano-I-phase | 147 ± 3 |
94Al-4Mn-2Cu | Al, D-phase | 134 ± 10 |
94Al-4Mn-2Fe | Al, I-phase | 154 ± 8 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stan-Głowińska, K. Formation of Quasicrystalline Phases and Their Close Approximants in Cast Al-Mn Base Alloys Modified by Transition Metals. Crystals 2018, 8, 61. https://doi.org/10.3390/cryst8020061
Stan-Głowińska K. Formation of Quasicrystalline Phases and Their Close Approximants in Cast Al-Mn Base Alloys Modified by Transition Metals. Crystals. 2018; 8(2):61. https://doi.org/10.3390/cryst8020061
Chicago/Turabian StyleStan-Głowińska, Katarzyna. 2018. "Formation of Quasicrystalline Phases and Their Close Approximants in Cast Al-Mn Base Alloys Modified by Transition Metals" Crystals 8, no. 2: 61. https://doi.org/10.3390/cryst8020061
APA StyleStan-Głowińska, K. (2018). Formation of Quasicrystalline Phases and Their Close Approximants in Cast Al-Mn Base Alloys Modified by Transition Metals. Crystals, 8(2), 61. https://doi.org/10.3390/cryst8020061