Crystal Structures from Powder Diffraction: Principles, Difficulties and Progress
Abstract
:1. Crystal Structures from Powders: Where Are We Currently?
1.1. Indexing: Still a Bottleneck
1.2. Fast and Low Noise Data: 2D-Detectors
1.3. Which Method for Structure Solution?
1.3.1. Methods Using Intensity Extraction
1.3.2. Methods Using Pattern Modelling
2. Molecular Compounds
3. Non-Molecular Compounds: Extended Solids
4. Structure Validation: Help of Theoreticians
5. Perspectives
5.1. Electron Crystallography
5.2. Nuclear Magnetic Resonance Crystallography
5.3. Serial Snapshot X-ray Crystallography
5.4. Pattern Modelling Methods Assisted by Ab Initio Calculations
5.5. Accumulated Knowledge-Guided Structure Solution
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Bragg, W.L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. 1913, A89, 248–277. [Google Scholar] [CrossRef]
- Debye, P.; Scherrer, P. Interferenzen an regellos orientierten Teilchen im Röntgenlicht. Phys. Z. 1916, 17, 277. [Google Scholar]
- David, W.I.F.; Shankland, K.; McCusker, L.B.; Baerlocher, C. Structure Determination from Powder Diffraction Data; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- David, W.I.F. Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 19–29. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Paszkowicz, W. Ninety years of powder diffraction: From birth to maturity. Synchrotron Radiat. Nat. Sci. 2006, 5, 1–2. [Google Scholar]
- Pecharsky, V.K.; Zavalij, P.Y. Fundametals Of Powder Diffraction and Structural Characterization of Materials; Kluwer Academic Publishers: Norwell, MA, USA, 2003. [Google Scholar]
- Dinnebier, R.E.; Billinge, S.J.L. Powder Diffraction: Theory and Practice; The Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Bergmann, J.; Le Bail, A.; Shirley, R.; Zlokazov, V. Renewed interest in powder diffraction data indexing. Z. Kristalogr. 2004, 219, 783–790. [Google Scholar] [CrossRef]
- Boultif, A. History of dichotomy method for powder pattern indexing. Powder Diffr. 2005, 20, 284–287. [Google Scholar] [CrossRef]
- Boultif, A.; Louër, D. Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Černý, R. “Free objects for crystallography”: A modular approach to ab initio structure determination from powder diffraction. J. Appl. Cryst. 2002, 35, 734–743. [Google Scholar] [CrossRef]
- Černý, R.; Favre-Nicolin, V.; Rohlícek, J.; Hušák, M.; Matej, Z.; Kužel, R. Expanding FOX: Auto-indexing, grid computing, profile fitting. CPD Newsl. 2007, 35, 16–19. [Google Scholar]
- Neumann, M.A. X-Cell: A novel indexing algorithm for routine tasks and difficult cases. J. Appl. Cryst. 2003, 36, 356–365. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Ban, V.; Sadikin, Y.; Černý, R.; Aranda, L.; Casati, N.; Devillers, M.; Filinchuk, Y. The first halide-free bimetallic aluminium borohydride: Synthesis, structure, stability and the decomposition pathway. J. Phys. Chem. 2014, 118, 145–153. [Google Scholar] [CrossRef]
- Schouwink, P.; Smrčok, L.; Černý, R. The role of the Li+ node in the Li-BH4 substructure of double-cation tetrahydroborates. Acta Cryst. B 2014, 70, 871–878. [Google Scholar]
- Černý, R.; Filinchuk, Y. Complex inorganic structures from powder diffraction: Case of tetrahydroborates of light metals. Z. Krist. 2011, 226, 882–891. [Google Scholar] [CrossRef]
- Fitch, A.; Curfs, C. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 103–112. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Palatinus, L. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 160–169. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Gilmore, C.J. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 142–159. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Shankland, K. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 37–42. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Baerlocher, C.; McCusker, L.B.; Prokic, S.; Wessels, T. Exploiting texture to estimate the relative intensities of overlapping reflections. Z. Krist. 2004, 219, 803–812. [Google Scholar] [CrossRef]
- Černý, R.; Favre-Nicolin, V. Direct space methods of structure determination from powder diffraction: Principles, guidelines and perspectives. Z. Krist. 2007, 222, 105–113. [Google Scholar] [CrossRef]
- Kwon, S.; Shin, H.S.; Gong, J.; Eom, J.H.; Jeon, A.; Yoo, S.H.; Chung, I.S.; Cho, S.J.; Lee, H.S. Self-assembled peptide architecture with a tooth shape: Folding into shape. J. Am. Chem. Soc. 2011, 133, 17618–17621. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.M.D. Powder diffraction crystallography of molecular solids. Top. Curr. Chem. 2012, 315, 133–178. [Google Scholar] [PubMed]
- Černý, R. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 62–69. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Deem, M.W.; Newsam, J.M. Determination of 4-connected framework crystal structures by simulated annealing. Nature 1989, 342, 260–262. [Google Scholar] [CrossRef]
- Burton, A.W. Structure solution of zeolites from powder diffraction data. Z. Krist. 2004, 219, 866–880. [Google Scholar] [CrossRef]
- Grosse-Kunstleve, R.W.; McCusker, L.B.; Baerlocher, C. Zeolite structure determination from powder diffraction data: Applications of the FOCUS method. J. Appl. Cryst. 1999, 32, 536–542. [Google Scholar] [CrossRef]
- Evans, I.R.; Howard, J.A.K.; Evans, J.S.O. α-Bi2Sn2O7—A 176 atom crystal structure from powder diffraction data. J. Mater. Chem. 2003, 13, 2098–2103. [Google Scholar] [CrossRef]
- Černý, R. Solving crystal structures of metal and chemical hydrides. Z. Krist. 2008, 223, 607–616. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Černý, R. A better FOX: Using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z. Krist. 2004, 219, 847–856. [Google Scholar] [CrossRef]
- Schouwink, P.; Černý, R. Complex hydrides—When powder diffraction needs help. Chimia 2014, 1/2, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Smrčok, L. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 231–238. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Van de Streek, J.; Neumann, M.A. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D). Acta Cryst. 2014, B70, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- McCusker, L.B.; Baerlocher, C. Electron crystallography as a complement to X-ray powder diffraction techniques. Z. Krist. 2013, 228, 1–10. [Google Scholar] [CrossRef]
- Kolb, U. The Power of Powder Diffraction, Int. School of Crystallography, Erice, pages 30–36. Available online: www.iucr.org/resources/commissions/powder-diffraction/schools/erice2011 (accessed on 2 June 2011).
- Zou, X.D.; Hovmöller, S.; Oleynikov, P. Electron Crystallography—Electron Microscopy and Electron Diffraction; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Bryce, D.L.; Taulelle, F. NMR crystallography. Acta Cryst. 2017, C73, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Natrue 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P.; Steinbrener, J.; Shoeman, R.L.; et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 2012, 337, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Dejoie, C.; McCusker, L.B.; Baerlocher, C.; Abela, R.; Patterson, B.D.; Kunz, M.; Tamura, N. Using a non-monochromatic microbeam for serial snapshot crystallography. J. Appl. Cryst. 2013, 46, 791–794. [Google Scholar] [CrossRef]
- Woodley, S.M.; Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 2008, 7, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Chotard, J.N.; Tang, W.S.; Raybaud, P.; Janot, R. Potassium silanide (KSiH3): A reversible hydrogen storage material. Chem. Eur. J. 2011, 17, 12302–12309. [Google Scholar] [CrossRef] [PubMed]
- Pannetier, J.; Bassas-Alsina, J.; Rodriguez-Carvajal, J.; Caignaert, V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Natrue 1990, 346, 343–345. [Google Scholar] [CrossRef]
- Neumann, M.A.; Leusen, F.J.J.; Kendrick, J. A major advance in crystal structure prediction. Angew. Chem. Int. Ed. 2008, 47, 2427–2430. [Google Scholar] [CrossRef] [PubMed]
- Mellot Draznieks, C.; Newsam, J.M.; Gorman, A.M.; Freeman, C.M.; Férey, G. De novo prediction of inorganic structures developed through automated assembly of secondary building units (AASBU Method). Angew. Chem. Int. Ed. 2000, 39, 2270–2275. [Google Scholar] [CrossRef]
- Foster, M.D.; Simperler, A.; Bell, R.G.; Delgado Friedrichs, O.; Almeida Paz, F.A.; Klinowski, J. Chemically feasible hypothetical crystalline networks. Nat. Mater. 2004, 3, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Le Bail, A. Inorganic structure prediction with GRINSP. J. Appl. Cryst. 2005, 38, 389–395. [Google Scholar] [CrossRef]
- Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P.L.; Furukawa, H.; Cascio, D.; Stoddart, J.F.; Yaghi, O.M. Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 2012, 51, 6443–6445. [Google Scholar] [CrossRef] [PubMed]
- Oganov, A.R.; Glass, C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704. [Google Scholar] [CrossRef] [PubMed]
- Schön, J.C.; Pentin, I.V.; Jansen, M. Ab initio computation of low-temperature phase diagrams exhibiting miscibility gaps. Phys. Chem. Chem. Phys. 2006, 8, 1778–1784. [Google Scholar] [CrossRef] [PubMed]
- Goedecker, S. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 2004, 120, 9911–9917. [Google Scholar] [CrossRef] [PubMed]
- David, W.I.F.; Shankland, K.; Van de Streek, J.; Pidcock, E.; Motherwell, W.D.S.; Cole, J.C. DASH: A program for crystal structure determination from powder diffraction data. J. Appl. Cryst. 2006, 39, 910–915. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Černý, R. Crystal Structures from Powder Diffraction: Principles, Difficulties and Progress. Crystals 2017, 7, 142. https://doi.org/10.3390/cryst7050142
Černý R. Crystal Structures from Powder Diffraction: Principles, Difficulties and Progress. Crystals. 2017; 7(5):142. https://doi.org/10.3390/cryst7050142
Chicago/Turabian StyleČerný, Radovan. 2017. "Crystal Structures from Powder Diffraction: Principles, Difficulties and Progress" Crystals 7, no. 5: 142. https://doi.org/10.3390/cryst7050142
APA StyleČerný, R. (2017). Crystal Structures from Powder Diffraction: Principles, Difficulties and Progress. Crystals, 7(5), 142. https://doi.org/10.3390/cryst7050142