Structure Property Relationships and Cationic Doping in [Ca24Al28O64]4+ Framework: A Review
Abstract
:1. Introduction
2. Electride Structure–Physical Property Relationships
2.1. Insulating Stoichiometric
2.2. Semiconducting Low/Medium Electron Concentration
2.3. Metallic High Electron Concentration
2.4. Summary
3. Electride Formation Processes
3.1. C12A7 Synthesis
3.2. Extraction Formation Processes
3.2.1. Metal Reduction Processes
3.2.2. Carbonaceous Atmosphere Process
3.3. Replacement Formation Processes
3.3.1. Replacement and Photoionization Process
3.3.2. Carbide Replacement Process
4. Cationic Doping of [Ca24Al28O64]4+:(4 * ∂)e−(2 − ∂)O2−
5. Conclusions
- Determining what is responsible for the increase in the Fano effect with increased carrier concentration and what is the relationship between free carriers and polarons.
- Synthesis of new doped-isostructural compounds and subsequent characterization of the structural and electronic changes that occur.
- Development of new reduction processes for stabilized structure that will be stable at higher temperatures and have large substitutions of framework Ca and Al cations.
- Development of direct electride synthesis processes where the cage framework can be nucleated by or through an anion exchange process where, after the framework nucleates slight changes in synthesis conditions, the stabilizing anions can be extracted creating anionic vacancies.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Boysen, H.; Lerch, M.; Stys, A.; Senyshyn, A. Structure and oxygen mobility in mayenite (Ca12Al14O33): A high-temperature neutron powder diffraction study. Acta Crystallogr. Sect. B Struct. Sci. 2007, B63, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Hosono, H. Synthesis and properties of 12CaO · 7Al2O3 electride: Review of single crystal and thin film growth. Philos. Mag. 2012, 92, 2596–2628. [Google Scholar] [CrossRef]
- Sushko, P.V.; Shluger, A.L.; Hirano, M.; Hosono, H. From Insulator to Electride: A Theoretical Model of Nanoporous Oxide 12CaO· 7Al2O3. J. Am. C 2007, 129, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Zhmoidin, G.I.; Chatterjee, A.K. Conditions and mechanism of interconvertibility of compounds 12CaO· 7Al2O3 and 5CaO· 3Al2O3. Cem. Concr. Res. 1984, 14, 386–396. [Google Scholar] [CrossRef]
- Teusner, M.; De Souza, R.A.; Krause, H.; Ebbinghaus, S.G.; Belghoul, B.; Martin, M. Oxygen Diffusion in Mayenite. J. Phys. Chem. C 2015, 119, 9721–9727. [Google Scholar] [CrossRef]
- Hayashi, K.; Hirano, M.; Hosono, H. Thermodynamics and Kinetics of Hydroxide Ion Formation in 12CaO· 7Al2O3. J. Phys. Chem. B 2005, 109, 11900–11906. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, R.N.; Majumdar, A.J. The hydration of 12CaO ·7Al2O3 at different temperatures. Cem. Concr. Res. 1988, 18, 473–478. [Google Scholar] [CrossRef]
- Hayashi, K.; Sushko, P.V.; Ramo, D.M.; Shluger, A.L.; Watauchi, S.; Tanaka, I.; Matsuishi, S.; Hirano, M.; Hosono, H. Nanoporous Crystal 12CaO·7Al2O3: A Playground for Studies of Ultraviolet Optical Absorption of Negative Ions. J. Phys. Chem. B 2007, 111, 1946–1956. [Google Scholar] [CrossRef] [PubMed]
- Eufinger, J.-P.; Schmidt, A.; Lerch, M.; Janek, J. Novel anion conductors—Conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Phys. Chem. Chem. Phys. 2015, 17, 6844–6857. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hirano, M.; Matsuishi, S.; Hosono, H. Microporous crystal 12CaO ·7Al2O3 encaging abundant O- radicals. J. Am. Chem. Soc. 2002, 124, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hirano, M.; Li, Q.-X.; Nishioka, M.; Sadakata, M.; Torimoto, Y.; Matsuishi, S.; Hosono, H. Electric Field Emission of High Density O- Ions from 12CaO ·7Al2O3 Engineered to Incorporate Oxygen Radicals. Electrochem. Solid State Lett. 2002, 5, J13–J16. [Google Scholar] [CrossRef]
- Hayashi, K.; Matsuishi, S.; Ueda, N.; Hirano, M.; Hosono, H. Maximum Incorporation of Oxygen Radicals, O- and O2-, into 12CaO ·7Al2O3 with a Nanoporous Structure. Chem. Mater. 2003, 15, 1851–1854. [Google Scholar] [CrossRef]
- Hayashi, K.; Ueda, N.; Hirano, M.; Hosono, H. Effect of stability and diffusivity of extra-framework oxygen species on the formation of oxygen radicals in 12CaO 7Al2O3. Solid State Ion. 2004, 173, 89–94. [Google Scholar] [CrossRef]
- Yang, S.; Kondo, J.N.; Hayashi, K.; Hirano, M.; Domen, K.; Hosono, H. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO ·7Al2O3. Chem. Mater. 2004, 16, 104–110. [Google Scholar] [CrossRef]
- Stober, R.; Nofz, M.; Gesner, W.; Kranz, G. Paramagnetic monitors (Mn2+, Mn4+, Fe3+, and O2−) in the solid-state reaction yielding 12CaO ·7A1203 and other aluminates. J. Solid State Chem. 1989, 81, 152–164. [Google Scholar] [CrossRef]
- Fujita, S.; Suzuki, K.; Ohkawa, M.; Mori, T.; Iida, Y.; Youhei, M.; Hideki, M.; Shimada, S. Oxidative Destruction of Hydrocarbons on a New Zeolite-like Crystal of Ca12Al10Si4O35 Including O2- and O22-Radicals. Chem. Mater. 2003, 15, 255–263. [Google Scholar] [CrossRef]
- Hayashi, K.; Hirano, M.; Hosono, H. Excess Oxygen in 12CaO·7Al2O3 Studied by Thermogravimetric Analysis. Chem. Lett. 2005, 34, 586–587. [Google Scholar] [CrossRef]
- Sushko, P.V.; Shluger, A.L.; Hayashi, K.; Hirano, M.; Hosono, H. Role of hydrogen atoms in the photoinduced formation of stable electron centers in H-doped 12CaO ·7Al2O3. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef]
- Hayashi, K.; Hirano, M.; Hosono, H. Functionalities of a nanoporous crystal 12CaO ·7Al2O3 originating from the incorporation of active anions. Bull. Chem. Soc. Jpn. 2007, 80, 872–884. [Google Scholar] [CrossRef]
- Hayashi, K. Kinetics of electron decay in hydride ion-doped mayenite. J. Phys. Chem. C 2011, 115, 11003–11009. [Google Scholar] [CrossRef]
- Hayashi, K.; Matsuishi, S.; Kamiya, T.; Hirano, M.; Hosono, H. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature 2002, 419, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Jeevaratnam, J.; Glasser, F.P.; Glasser, L.S.D. Anion Substitution and Structure of 12CaO ·7Al2O3. J. Am. Ceram. Soc. 1964, 47, 105–106. [Google Scholar] [CrossRef]
- Williams, P.P. Refinement of the structure of 11CaO ·7Al2O3 ·CaF2. Acta Cryst. 1973, B29, 1550–1551. [Google Scholar] [CrossRef]
- Song, C.; Sun, J.; Li, J.; Ning, S.; Yamamoto, M.; Tu, J.; Torimoto, Y.; Li, Q. Characteristics and Mechanisms of atomic flourine anions emission from nanoporous crystal [Ca24Al28O64]4+ (F−)3.36(O2−)0.32 Surface. J. Phys. Chem. C 2008, 112, 19061–19068. [Google Scholar] [CrossRef]
- Feng, Q.L.; Glasser, F.P.; Howie, R.A.; Lachowski, E.E. Chlorosilicate with the 12CaO ·7Al2O3 structure and its relationship to garnet. Acta Cryst. 1988, C44, 589–592. [Google Scholar] [CrossRef]
- Schmidt, A.; Lerch, M.; Eufinger, J.P.; Janek, J.; Dolle, R.; Wiemhöfer, H.D.; Tranca, I.; Islam, M.M.; Bredow, T.; Boysen, H.; et al. CN-mayenite Ca12Al14O32(CN)2: Replacing mobile oxygen ions by cyanide ions. Solid State Sci. 2014, 38, 69–78. [Google Scholar] [CrossRef]
- Schmidt, A.; Boysen, H.; Senyshyn, A.; Lerch, M. New findings on N-mayenite and a new kind of anion substituted mayenite: Ca12Al14O32(NO2)2. Z. Krist. 2014, 229, 427–434. [Google Scholar] [CrossRef]
- Polfus, J.M.; Toyoura, K.; Hervoches, C.H.; Sunding, M.F.; Tanaka, I.; Haugsrud, R. Nitrogen and hydrogen defect equilibria in Ca12Al14O33: A combined experimental and computational study. J. Mater. Chem. 2012, 22, 15828–15835. [Google Scholar] [CrossRef]
- Kim, S.; Miyakawa, M.; Hayashi, K.; Sakai, T.; Hirano, M.; Hosono, H. Simple and Efficient Fabrication of Room Temperature Stable Electride: Melt-Solidification and Glass Ceramics. J. Am. Chem. Soc. 2005, 127, 1370–1371. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Ryu, J.H.; Eun, J.W.; Choi, B.G.; Shim, K.B. One-Step Synthesis of a 12CaO ·7Al2O3 Electride via the Spark Plasma Sintering (SPS) Method. Electrochem. Solid-State Lett. 2011, 14, E41–E43. [Google Scholar] [CrossRef]
- Volodin, A.M.; Zaikovskii, V.I.; Kenzhin, R.M.; Bedilo, A.F.; Mishakov, I.V.; Vedyagin, A.A. Synthesis of Nanocrystalline Calcium Aluminate C12A7 under Carbon Nanoreactor Conditions. Mater. Lett. 2017, 189, 210–212. [Google Scholar] [CrossRef]
- Boysen, H.; Kaiser-Bishoff, I.; Lerch, M. Anion Diffusion Processes in O- and N-Mayenite Investigated by Neutron Powder Diffraction. Diffus. Fundam. 2008, 8, 2.1–2.8. [Google Scholar]
- Miyakawa, M.; Kamioka, H.; Hirano, M.; Kamiya, T.; Sushko, P.V.; Shluger, A.L.; Matsunami, N.; Hosono, H. Photoluminescence from Au ion-implanted nanoporous single-crystal 12CaO ·7Al2O3. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef]
- Huang, J.; Valenzano, L.; Sant, G. Framework and Channel Modifications in Mayenite (12CaO ·7Al2O3) Nanocages By Cationic Doping. Chem. Mater. 2015, 27, 4731–4741. [Google Scholar] [CrossRef]
- Bridges, F.; Davies, G.; Robertson, J.; Stoneham, A.M. The spectroscopy of crystal defects: A compendium of defect nomenclature. J. Phys. Condens. Matter 1990, 2, 2875–2928. [Google Scholar] [CrossRef]
- Dye, J.L. Electrides: Early Examples of Quantum Confinement. Acc. Chem. Res. 2009, 42, 1564–1572. [Google Scholar] [CrossRef] [PubMed]
- Matsuishi, S.; Toda, Y.; Miyakawa, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Tanaka, I.; Hosono, H. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-). Science 2003, 301, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, Z.; Lei, H.; Toda, Y.; Matsuishi, S.; Kamiya, T.; Ueda, S.; Hosono, H. Two-dimensional transition-metal electride Y2C. Chem. Mater. 2014, 26, 6638–6643. [Google Scholar] [CrossRef]
- Lee, K.; Kim, S.W.; Toda, Y.; Matsuishi, S.; Hosono, H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 2013, 494, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Inoshita, T.; Jeong, S.; Hamada, N.; Hosono, H. Exploration for two-dimensional electrides via database screening and ab initio alculation. Phys. Rev. X 2014, 4, 031023. [Google Scholar] [CrossRef]
- Zhao, S.; Kan, E.; Li, Z. Electride: From computational characterization to theoretical design. WIREs Comput. Mol. Sci. 2016, 6, 430–440. [Google Scholar] [CrossRef]
- Liao, S.; Yao, R.; Chen, X.; Wang, G.; Zheng, F. Characteristics, Thermodynamics, and Preparation of Nanocaged 12CaO ·7Al2O3 and Its Derivatives. Int. J. Appl. Ceram. Technol. 2016, 13, 844–855. [Google Scholar] [CrossRef]
- Kim, S.-W.; Matsuishi, S.; Miyakawa, M.; Hayashi, K.; Hirano, M.; Hosono, H. Fabrication of room temperature-sTable 12CaO ·7Al2O3 electride: A review. J. Mater. Sci. Mater Electron. 2007, 18, S5–S14. [Google Scholar] [CrossRef]
- Gfellar, F. Highlights in Mineralogical Crystallography: Mayenite Ca12Al14O33: From Minerals to the First Stable Electride Crystals; Armbruster, T., Danisi, R.M., Eds.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2016; ISBN 978-3-11-041704-3. [Google Scholar]
- Feizi, E.; Ray, A.K. 12CaO ·7Al2O3 Ceramic: A Review of the Electronic and Optoelectronic Applications in Display Devices. J. Disp. Technol. 2016, 12, 451–459. [Google Scholar] [CrossRef]
- Sakakura, T.; Tanaka, K.; Takenaka, Y.; Matsuishi, S.; Hosono, H.; Kishimoto, S. Determination of the local structure of a cage with an oxygen ion in Ca12Al14O33. Acta Crystallogr. Sect. B Struct. Sci. 2011, 67, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Palacios, L.; Cabeza, A.; Bruque, S.; Garcia-Granda, S.; Aranda, M.A.G. Structure and Electrons in Mayenite Electrides. Inorg. Chem. 2008, 47, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Palacios, L.; De La Torre, Á.G.; Bruque, S.; García-Muñoz, J.L.; García-Granda, S.; Sheptyakov, D.; Aranda, M.A.G. Crystal structures and in-situ formation study of mayenite electrides. Inorg. Chem. 2007, 46, 4167–4176. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Hayashi, K.; Kubota, Y.; Kamiya, T.; Hirano, M.; Takata, M.; Hosono, H. Anion Incorporation-induced Cage Deformation in 12CaO·7Al2O3 Crystal. Chem. Lett. 2007, 36, 902–903. [Google Scholar] [CrossRef]
- Boysen, H.; Kaiser-Bischoff, I.; Lerch, M.; Berendts, S.; Börger, A.; Trots, D.M.; Hoelzel, M.; Senyshyn, A. Structures and properties of variously doped Mayenite investigated by neutron and synchrotron powder diffraction. Z. Krist. Suppl. 2009, 30, 323–328. [Google Scholar] [CrossRef]
- Matsuishi, S.; Kim, S.W.; Kamiya, T.; Hirano, M.; Hosono, H. Localized and Delocalized Electrons in Room-Temperature Stable Electride [Ca24Al28O64]4+(O2−)2−x(e−)2x: Analysis of Optical Reflectance Spectra. J. Phys. Chem. C 2008, 112, 4753–4760. [Google Scholar] [CrossRef]
- Lobo, R.P.S.M.; Bontemps, N.; Bertoni, M.I.; Mason, T.O.; Poeppelmeier, K.R.; Freeman, A.J.; Park, M.S.; Medvedeva, J.E. Optical Conductivity of Mayenite: From Insulator to Metal. J. Phys. Chem. C 2015, 119, 8849–8856. [Google Scholar] [CrossRef]
- Medvedeva, J.E.; Freeman, A.J. Combining high conductivity with complete optical transparency: A band-structure approach. Europhys. Lett. 2005, 69, 583. [Google Scholar] [CrossRef]
- Bertoni, M.I.; Mason, T.O.; Medvedeva, J.E.; Wang, Y.; Freeman, A.J.; Poeppelmeier, K.R. Enhanced electronic conductivity in Si-substituted calcium aluminate. J. Appl. Phys. 2007, 102, 113704. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Hou, J.G.; Zhu, Q. Is mayenite without clathrated oxygen an inorganic electride? Angew. Chem. Int. Ed. 2004, 43, 6479–6482. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Toda, Y.; Hayashi, K.; Hirano, M.; Hosono, H. Synthesis of a Room Temperature STable 12CaO ·7Al2O3 Electride from the Melt and Its Application as an Electron Field Emitter. Chem. Mater. 2006, 18, 1938–1944. [Google Scholar] [CrossRef]
- Kim, S.W.; Matsuishi, S.; Nomura, T.; Kubota, Y.; Takata, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Hosono, H. Metallic State in a Lime—Alumina Compound with Nanoporous Structure. Nano Lett. 2007, 7, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Miyakawa, M.; Hirano, M.; Kohama, Y.; Kawaji, H.; Atake, T.; Ikegami, H.; Kono, K.; Hosono, H. Superconducting Transition in Electron-Doped 12CaO ·7Al2O3. Mater. Trans. 2008, 49, 1748–1752. [Google Scholar] [CrossRef]
- Kim, S.W.; Hayashi, K.; Hirano, M.; Hosono, H.; Tanaka, I. Electron carrier generation in a refractory oxide 12CaO ·7Al2O3 by heating in reducing atmosphere: Conversion from an insulator to a persistent conductor. J. Am. Ceram. Soc. 2006, 89, 3294–3298. [Google Scholar] [CrossRef]
- Hosono, H.; Kim, S.-W.; Matsuishi, S.; Tanaka, S.; Miyake, A.; Kagayama, T.; Shimizu, K. Superconductivity in room-temperature stable electride and high-pressure phases of alkali metals. Philos. Trans. A 2015, 373, 20140450. [Google Scholar] [CrossRef] [PubMed]
- Ebbinghaus, S.G.; Krause, H.; Syrowatka, F. Floating Zone Growth of Large and Defect-free Ca12Al14O33 Single Crystals. Cryst. Growth Des. 2013, 13, 2990–2994. [Google Scholar] [CrossRef]
- Kurashige, K.; Toda, Y.; Matstuishi, S.; Hayashi, K.; Hirano, M.; Hosono, H. Czochralski Growth of 12CaO ·7Al2O3 Crystals. Cryst. Growth Des. 2006, 6, 1602–1605. [Google Scholar] [CrossRef]
- Tian, Y.; Pan, X.; Yu, H.; Tu, G. Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction. J. Alloys Compd. 2016, 670, 96–104. [Google Scholar] [CrossRef]
- Ruszak, M.; Witkowski, S.; Pietrzyk, P.; Kotarba, A.; Sojka, Z. The role of intermediate calcium aluminate phases in solid state synthesis of mayenite (Ca12Al14O33). Funct. Mater. Lett. 2011, 4, 183–186. [Google Scholar] [CrossRef]
- Phase Equilibria Diagrams Online Database (NIST Standard Reference Database 31), The American Ceramic Society and the National Institute of Standards and Technology, 2017. Figure Numbers 12337. Available online: www.nist.gov/srd/nist31.cfm (accessed on 10 April 2017).
- Rashad, M.M.; Mostafa, A.G.; Rayan, D.A. Structural and optical properties of nanocrystalline mayenite Ca12Al14O33 powders synthesized using a novel route. J. Mater. Sci. Mater Electron. 2016, 27, 2614–2623. [Google Scholar] [CrossRef]
- Matsuishi, S.; Nomura, T.; Hirano, M.; Kodama, K.; Shamoto, S.I.; Hosono, H. Direct synthesis of powdery inorganic electride [Ca24Al28O64]4+(e−)4 and determination of oxygen stoichiometry. Chem. Mater. 2009, 21, 2589–2591. [Google Scholar] [CrossRef]
- Inoue, Y.; Kitano, M.; Kim, S.-W.; Yokoyama, T.; Hara, M.; Hosono, H. Highly Dispersed Ru on Electride [Ca24Al28O64]4+(e−)4 as a Catalyst for Ammonia Synthesis. ACS Catal. 2014, 4, 674–680. [Google Scholar] [CrossRef]
- Yoon, S.G.; Kim, S.W.; Yoon, D.H.; Hirano, M.; Hosono, H. Single crystal growth of nanoporous C12A7:e− by controlling melt state. J. Nanosci. Nanotechnol. 2009, 9, 7345–7349. [Google Scholar] [CrossRef] [PubMed]
- Kofstad, P. Thermogravimetric Studies of the Defect Structure of Rutile (TiO2). J. Phys. Chem. Solids 1962, 23, 1579–1586. [Google Scholar] [CrossRef]
- Jacob, K.T.; Rajitha, G. Gibbs Energy of Formation of Ca3Ti8Al12O37 and Phase Relations and Chemical Potentials in the System Al2O3-TiO2-CaO. J. Phase Equilibria Diffus. 2012, 33, 293–302. [Google Scholar] [CrossRef]
- Ali, M.M.; Nagao, M.; Watauchi, S.; Tanaka, I. Floating Zone Growth and Characterization of (Ca1−xNdx)12Al14O33+6x (x~0.001) Single Crystals. ACS Omega 2016, 1, 1157–1163. [Google Scholar] [CrossRef]
- Miyakawa, M.; Hirano, M.; Kamiya, T.; Hosono, H. High electron doping to a wide band gap semiconductor 12CaO⋅7Al2O3 thin film. Appl. Phys. Lett. 2007, 90, 182105. [Google Scholar] [CrossRef]
- Miyakawa, M.; Ueda, N.; Kamiya, T.; Hirano, M.; Hosono, H. Novel Room Temperature Stable Electride 12SrO ·Al2O3 Thin Films: Fabrication, Optical and Electron transport properites. J. Ceram. Soc. Jpn. 2007, 115, 567–570. [Google Scholar] [CrossRef]
- Ebbinghaus, S.G.; Krause, H.; Lee, D.-K.; Janek, J. Single Crystals of C12A7 (Ca12Al14O33) Substituted with 1 mol % Iron. Cryst. Growth Des. 2014, 14, 2240–2245. [Google Scholar] [CrossRef]
- Sushko, P.V.; Shluger, A.L.; Hayashi, K.; Hirano, M.; Hosono, H. Photoinduced generation of electron anions in H-doped nanoporous oxide 12CaO ·7Al2O3: Toward an optically controlled formation of electrides. Appl. Phys. Lett. 2005, 86, 092101. [Google Scholar] [CrossRef]
- Hayashi, K. Heavy doping of H− ion in 12CaO ·7Al2O3. J. Solid State Chem. 2011, 184, 1428–1432. [Google Scholar] [CrossRef]
- Bertoni, M.I.; Mason, T.O.; Medvedeva, J.E.; Freeman, A.J.; Poeppelmeier, K.R.; Delley, B. Tunable conductivity and conduction mechanism in an ultraviolet light activated electronic conductor. J. Appl. Phys. 2005, 97, 103713. [Google Scholar] [CrossRef]
- Dong, Y.; Hayashi, K.; Nozoe, H.; Shinoda, Y.; Hosono, H. Chloride-Ion-Stabilized Strontium Mayenite: Expansion of Versatile Material Family. J. Am. Ceram. Soc. 2014, 97, 4037–4044. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Armbruster, T.; Bailau, R.; Sharygin, V.V. Mayenite supergroup, part I: Recommended nomenclature. Eur. J. Mineral. 2015, 27, 99–111. [Google Scholar] [CrossRef]
- Yamaguchi, O.; Narai, A.; Shimizu, K. New Compound in the System SrO-Al203. J. Am. Ceram. Soc. 1986, 69, C36–C37. [Google Scholar] [CrossRef]
- Hayashi, K.; Ueda, N.; Matsuishi, S.; Hirano, M.; Kamiya, T.; Hosono, H. Solid State Syntheses of 12SrO ·7Al2O3 and Formation of High Density Oxygen Radical Anions, O− and O2−. Chem. Mater. 2008, 20, 5987–5996. [Google Scholar] [CrossRef]
- Miyakawa, M.; Kobayashi, K.; Taniguchi, T. High-pressure synthesis of a 12CaO·7Al2O3—12SrO·7Al2O3 solid solution. J. Am. Ceram. Soc. 2017, 100, 1285–1289. [Google Scholar] [CrossRef]
- Hayashi, K.; Sushko, P.V.; Hashimoto, Y.; Shluger, A.L.; Hosono, H. Hydride ions in oxide hosts hidden by hydroxide ions. Nat. Commun. 2014, 5, 3515. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, M.; Hiramatsu, H.; Kamiya, T.; Hirano, M.; Hosono, H. Fabrication and electron transport properties of epitaxial films of electron-doped 12CaO·7Al2O3 and 12SrO·7Al2O3. J. Solid State Chem. 2010, 183, 385–391. [Google Scholar] [CrossRef]
- Teusner, M.; De Souza, R.A.; Krause, H.; Ebbinghaus, S.G.; Martin, M. Oxygen transport in undoped and doped mayenite. Solid State Ion. 2016, 284, 25–27. [Google Scholar] [CrossRef]
- Schmidt, D.A. Synthese und Charakterisierung Substituierter Mayenitphasen. Ph.D.Thesis, Technischen Universitat Berlin, Berlin, Germany, 2014. [Google Scholar]
- Maurelli, S.; Ruszak, M.; Witkowski, S.; Pietrzyk, P.; Chiesa, M.; Sojka, Z. Spectroscopic CW-EPR and HYSCORE investigations of Cu(2+) and O2− species in copper doped nanoporous calcium aluminate (12CaO ·7Al2O3). Phys. Chem. Chem. Phys. 2010, 12, 10933–10941. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Lü, W.; Guo, N.; Jia, Y.; Zhao, Q.; Jiao, M.; Shao, B.; You, H. Efficient sensitization of Mn2+ emission by Eu2+ in Ca12Al14O33Cl2 host under UV excitation. RSC Adv. 2013, 3, 16034–16039. [Google Scholar] [CrossRef]
- Palacios, L.; Bruque, S.; Aranda, M.A.G. Structure of gallium-doped mayenite and its reduction behaviour. Phys. Status Solidi 2008, 245, 666–672. [Google Scholar] [CrossRef]
- Irvine, J.T.S.; West, A.R. Ca12Al14O33 solid electrolytes doped with zinc and phosphorus. Solid State Ion. 1990, 40–41, 896–899. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Y.; Yan, D.; Bian, H.; Li, H.; Liu, C.; Xu, C.; Wang, X. Long lasting blue phosphoresence and photostimulated luminescence in 12CaO ·7Al2O3:Eu thin films grown by pulsed laser deposition. Opt. Mater. (Amst) 2014, 36, 1771–1775. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Wang, T.; Hao, W. Preparation and characterization of a new long afterglow indigo phosphor Ca12Al14O33:Nd,Eu. Mater. Lett. 2003, 57, 4315–4318. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Sun, J.; Liu, L.; Xu, Y. Up-conversion luminescence of Er3+-doped and Yb3+/Er3+ co-doped 12CaO ·7Al2O3 poly-crystals. J. Rare Earths 2011, 29, 826–829. [Google Scholar] [CrossRef]
- Liu, Y.X.; Ma, L.; Yan, D.T.; Zhu, H.C.; Liu, X.L.; Bian, H.Y.; Zhang, H.; Wang, X.J. Effects of encaged anions on the optical and EPR spectroscopies of RE doped C12A7. J. Lumin. 2014, 152, 28–32. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Xu, C.; Liu, Y.; Wang, U.; Li, X. Local microstructure and photoluminescence of Er-doped 12CaO ·7Al2O3 powder. J. Rare Earths 2008, 26, 433–438. [Google Scholar] [CrossRef]
- Liao, S.-Y.; Yao, R.; Chen, X.-Y.; Wang, G.-R.; Zheng, F. Structure refinement and up-conversion of Ho3+/Er3+ Co-doped 12CaO ·7Al2O3. Mater. Des. 2016, 108, 93–105. [Google Scholar] [CrossRef]
- Tõldsepp, E.; Avarmaa, T.; Denks, V.; Feldbach, E.; Kirm, M.; Maaroos, A.; Mändar, H.; Vielhauer, S. Synthesis and luminescence properties of Ce 3+ doped nanoporous 12CaO ·7Al2O3 powders and ceramics. Opt. Mater. (Amst) 2010, 32, 784–788. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Yan, D.; Zhu, H.; Liu, C.; Liu, W.; Xu, C.; Liu, Y.; Zhang, H.; Wang, X. A multiphase strategy for realizing green cathodoluminescence in 12CaO·7Al2O3–CaCeAl3O7:Ce3+,Tb3+ conductive phosphor. Dalt. Trans. 2013, 42, 16311–16317. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Yan, D.; Zhang, M.; Yang, J.; Zhu, H.; Liu, C.; Xu, C.; Wang, X. Encaged-anion tunable luminescence of Ce3+-activated single host Ca12Al14O32Cl2 phosphor for UV pumped multi-color LEDs. Mater. Des. 2016, 107, 139–143. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Y.; Yan, D.; Yan, X.; Liu, C.; Xu, C. White Luminescence of Dy3+ Ions Doped 12CaO·7Al2O3 Nanopowders Under UV Light Excitation. J. Nanosci. Nanotechnol. 2011, 11, 9958–9963. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.; Liu, Y.; Wang, X. Single-phased white-emitting 12CaO ·7Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays. J. Mater. Chem. 2012, 22, 16839–16843. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Zhu, H.; Yan, D.; Yang, J.; Zhang, X.; Liu, C.; Xu, C. Enhancement of encaged electron concentration by Sr2+ doping and improvement of Gd3+ emission through controlling encaged anions in conductive C12A7 phosphors. Phys. Chem. Chem. Phys. 2016, 18, 18697–18704. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Yao, R.; Liu, Y.; Chen, X.; Hu, X.; Zheng, F. Green up-conversion of C12A7–Ho3+ prepared by co-precipitation method. J. Alloys Compd. 2015, 642, 7–14. [Google Scholar] [CrossRef]
- Mao, Y.-Q.; Pu, Y.-P.; Wei, J.-F. Luminescence properties of Pr doped 12CaO ·7Al2O3 ceramics. Mater. Res. Innov. 2011, 15, 260–263. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhang, M.; Yang, J.; Zhu, H.; Yan, D.; Liu, C.; Xu, C. Red-emitting nano-porous 12CaO ·7Al2O3:Sm3+ conductive phosphor for low-voltage field emission displays. Mater. Res. Bull. 2017, 86, 51–56. [Google Scholar] [CrossRef]
- Sato, K.; Yamaguchi, M.; Fujita, S.; Suzuki, K.; Mori, T. Enhancement of the activity of calcium aluminosilicate (Ca12Al10Si4O35) for the combustion of diesel soot via the substitution of Ca2+ ions with transition metal ions. Catal. Commun. 2006, 7, 132–135. [Google Scholar] [CrossRef]
- Iimura, S.; Tomota, Y.; Matsuishi, S.; Masuda, R.; Seto, M.; Hiraka, H.; Ikeda, K.; Otomo, T.; Hosono, H. Ferrimagnetic Cage Framework in Ca12Fe10Si4O32Cl6. Inorg. Chem. 2017, 56, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Iritani, J.; Miyamoto, R.; Fujita, S.; Suzuki, K.; Ohkawa, M.; Mori, T. Reactivity of superoxide ions (O2−) occluded in micropores of calcium aluminosilicate varied via substitution with transition metal ions. Stud. Surf. Sci. Catal. 2005, 158, 2001–2008. [Google Scholar] [CrossRef]
- Fujita, S.; Suzuki, K.; Mori, T. Preparation of high-performance Co3O4 catalyst for hydrocarbon combustion from Co-containing hydrogarnet. Catal. Lett. 2003, 86, 139–144. [Google Scholar] [CrossRef]
- Shannon, B.Y.R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
Name [Occup.] | Wycoff Site | Boysen [1] | Nomura [49] | Palacios [47] | Sakakura [46] | |
---|---|---|---|---|---|---|
Ca1 | 24d | x | 0.1432 (3) | 0.1401 (7) | 0.13831 (2) | 0.13933 (2) |
[1 − (X + 4Y)] | y | 0 | 0 | 0 | 0 | |
z | 0.25 | 0.25 | 0.25 | 0.25 | ||
Ca1a | 24d | x | 0.1867 | 0.1771 (5) | 0.17451 | - |
[X + 2Y] | y | 0 | 0 | 0 | - | |
z | 0.25 | 0.25 | 0.25 | - | ||
Ca1a | 48e | x | - | - | - | 0.1693 (2) |
y | - | - | - | 0.0067 (3) | ||
z | - | - | - | 0.2503 (3) | ||
Ca1b | 24d | x | - | 0.1977 (5) | 0.2065 | 0.2069 (1) |
[2Y] | y | - | 0 | 0 | 0 | |
z | - | 0.25 | 0.25 | 0.25 | ||
Ca1c | 48e | x | - | - | - | 0.1353 (2) |
[Y] | y | - | - | - | 0.0043 (3) | |
z | - | - | - | 0.2354 (2) | ||
Al1 [1 − 3Y] | 16c | x | 0.0188 (1) | 0.0189 | 0.01867 (2) | 0.01861 (9) |
Al1a | 48e | x | - | - | 0.30520 (9) | 0.3041 (2) |
[Y] | y | - | - | 0.19510 (9) | 0.1984 (2) | |
z | - | - | 0.26090 (9) | 0.2619 (2) | ||
Al2 | 12b | x | 0.875 | 0.8750 | 0.875 | 0.875 |
[1] | y | 0 | 0 | 0 | 0 | |
z | 0.25 | 0.25 | 0.25 | 0.25 | ||
O1 | 48e | x | 0.0367 (1) | 0.0381 (1) | 0.03612 (4) | 0.03605 (4) |
[1 − 2Y] | y | 0.4429 (1) | 0.44290 (8) | 0.44231 (4) | 0.44234 (3) | |
z | 0.15054 (9) | 0.1510 (1) | 0.15049 (4) | 0.15052 (3) | ||
O1a | 48e | x | - | - | - | 0.1302 (3) |
[Y] | y | - | - | - | 0.0603 (3) | |
z | - | - | - | 0.4328 (3) | ||
O1b | 48e | x | - | - | - | 0.1718 (5) |
[Y] | y | - | - | - | 0.0312 (4) | |
z | - | - | - | 0.4352 (5) | ||
O2 [1 − 3Y] | 16c | x | 0.18519 (9) | 0.1865 (1) | 0.18526 (3) | 0.18510 (4) |
O2a | 48e | x | - | - | - | 0.1996 (6) |
[Y] | y | - | - | - | 0.1750 (7) | |
z | - | - | - | 0.1893 (6) | ||
O3 | 12a | x | 0.375 | 0.375 | 0.375 | - |
(center) | y | 0 | 0 | 0 | - | |
[X] | z | 0.25 | 0.25 | 0.25 | - | |
O3 | 48e | x | - | 0.344 (2) | 0.3588 (2) | 0.3559 (6) |
(off cen.) | y | - | 0.036 (2) | 0.0616 (2) | 0.0614 (7) | |
[Y] | z | - | 0.243 (5) | 0.2479 (2) | 0.2506 (7) |
Dopant + (Co-Dopants) (valence/CN/IR) Al (3+/4/0.39) Ca (2+/6/1.00) | Formula Representing the dopant site and change in cage charge with aliovalent doping. The occluded species is not corrected for an increase in cage charge. | References Doped/co-doped C12A7 synthesis | Sub. Site Substitutional site for dopant normally determined by ionic radii | Max x/y Maximum stoichiometric value reported | a [Å] | ER |
Oxides | ||||||
Sr (2+/6/1.18) | [81]—SG 1 [82]—SS 2 [83]—HSS 3 [79]—SS [79]—SPS 4 [84] | ** | 0.24 | 12.33: ( [83] 12.346 (2): ( [79] | [74] [85] | |
Fe (2+/4/0.63) (2+/6/0.78) (3+/4/0.49) (3+/6/0.645) | [15]—SS [75]—FZ 5 [86]—FZ [87]—SG | ** | 0.28 | 11.9904 (4) [75] | [75] | |
Cu (1+/4/0.6) (1+/6 /0.77) (2+/4/0.57) (2+/6/0.73) | [88]—SS [87]—SG | ** | 1 | 11.974 | N/A | |
Nb (3+/6/0.72) (4+/6/0.68) (5+/4/0.48) (5+/6/0.64) | [87]—SG | 0.24 | 12.0049(3) | N/A | ||
Ta (3+/6/0.72) (4+/6 /0.68) (5+/6/0.64) | [87]—SG | 0.24 | N/A | N/A | ||
Co (2+/4/0.58) (2+/6/~0.7) (3+/6/~ 0.58) (4+/4/0.4) | [87]—SG | unknown | 0.24 | N/A | N/A | |
V (2+/6/0.79) (3+/6/0.64) (4+/6/0.58) (5+/4/0.46) (5+/6/0.54) | [87]—SG | 0.72-1.2 | N/A | N/A | ||
Ni (2+/4/0.55) (2+/6/0.69) (3+/6/~0.58) (4+/6/0.48) | [86]—FZ [87]—SG | ** | 0.28 | N/A | N/A | |
Mg (2+/4/0.57) (2+/6/0.72) | [78]—SS [87]—SG | 2 | N/A | [78] | ||
Dopant + (Co-Dopants) (valence/CN/IR) | Formula | Reference | Sub. Site | Max x/y | a [Å] | ER |
Mn (2+/4/0.66) (2+/6/~0.75) (3+/6/0.65) (4+/4/0.39) (4+/6/0.53) (5+/4/0.33) (6+/4/0.25) | [89]—SS [15]—SS | possibly | 0.28 | N/A | N/A | |
Ga (3+/4/0.47) (3+/6/0.62) | [90]—SS [87]—SG | ** | 2 | 11.99734(6) | [90] | |
Zn + P (2+/4/0.6) (2+/6/0.74) | [91]—SS [87]—SG | 1.3 | 11.993(2) | N/A | ||
P (3+/6/0.44) (5+/4/0.17) (5+/6/0.38) | [91]—SS | 0.66 | 11.981(2) | N/A | ||
Eu + (Mn, Yb, Nb) (2+/6/1.17) (3+/6/~0.947) | [89]—SS [92]—PLD 6 [93]—SS [94]—SS [95] | 0.04 | N/A | N/A | ||
Er (3+/6/0.89) | [96]—CP 7 [94]—SS [95] [97]—CP | 0.12 0.72 [94] 2.4 [97] | N/A | N/A | ||
Ce (3+/6/1.01) (4+/6/0.87) | [98]—SS [98]—SG [99]—SS [95] [100]—SS | 0.24 | N/A | N/A | ||
Dy + (Ce) (3+/6/1.07) (4+/6/0.912) | [101]—CP [102] | 0.48 | N/A | N/A | ||
Gd + (Sr) (3+/6/0.938) | [103]—SS [95] | 0.024 | N/A | [103] | ||
Tb + (Ce) (3+/6/0.923) (4+/6 /0.76) | [99]—SS | 0.24 | N/A | N/A | ||
Nd (3+/6/0.983) | [93]—SS [72]—FZ | 0.2 | N/A | N/A | ||
Dopant + (Co-Dopants) (valence/CN/IR) | Formula | Reference | Sub. Site | Max x/y | a [Å] | ER |
Yb (2+/6 /1.02) (3+/6/0.868) | [94]—SS | 2.4 | N/A | N/A | ||
Ho (3+/6/0.901) | [104]—CP [97]—CP | 1.2 | N/A | N/A | ||
Pr (3+/6/0.99) (4+/6/0.85) | [105]—SS | 0.192 | 12.007 | N/A | ||
Sm (3+/6/0.958) | [106]—SG | 0.48 | N/A | [106] | ||
Silicates | ||||||
Si (4+/4/0.26) (4+/6/0.4) | [16]—HT 8 [54]—HT [107]—HT | ** | - | 11.9748 (15) [16] | [54] | |
Fe + Si | [108]—SS | ** | - | 12.2158 (8) | N/A | |
Si + (Co, Ni, Cr, Cu, Fe) | [109]—HT [107]—HT [110]—HT(Co) | Cu (1.2) Cr (1.7) Co (0.82) Ni (2.4) Fe (0.96) | N/A | N/A |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salasin, J.R.; Rawn, C. Structure Property Relationships and Cationic Doping in [Ca24Al28O64]4+ Framework: A Review. Crystals 2017, 7, 143. https://doi.org/10.3390/cryst7050143
Salasin JR, Rawn C. Structure Property Relationships and Cationic Doping in [Ca24Al28O64]4+ Framework: A Review. Crystals. 2017; 7(5):143. https://doi.org/10.3390/cryst7050143
Chicago/Turabian StyleSalasin, John Robert, and Claudia Rawn. 2017. "Structure Property Relationships and Cationic Doping in [Ca24Al28O64]4+ Framework: A Review" Crystals 7, no. 5: 143. https://doi.org/10.3390/cryst7050143
APA StyleSalasin, J. R., & Rawn, C. (2017). Structure Property Relationships and Cationic Doping in [Ca24Al28O64]4+ Framework: A Review. Crystals, 7(5), 143. https://doi.org/10.3390/cryst7050143