Evaluation of the Effect of Nd Content and Extrusion Process on Thermal Conductivity of Mg-Mn-Zn-Nd Alloys
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. Microstructure of the Alloys
3.2. Thermal Conductivity
4. Discussion
4.1. Effect of Nd Content on the Thermal Conductivity
4.2. Effect of Extrusion Process on the Thermal Conductivity
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, F.; Chen, Z. Calorimetric Technology and Determination of Thermal Properties; China University of Science and Technology Press: Hefei, China, 2009. [Google Scholar]
- Yamasachi, M.; Kawamura, Y. Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase. Scr. Mater. 2009, 60, 264–267. [Google Scholar] [CrossRef]
- Rudajevová, A.; Staněk, M.; Lukáć, P. Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys. Mater. Sci. Eng. A 2003, 341, 152–157. [Google Scholar] [CrossRef]
- Peng, J.; Zhong, L.; Wang, Y.; Yang, J.; Lu, Y.; Pan, F. Effect of Ce addition on thermal conductivity of Mg-2Zn-Mn alloy. J. Alloys Compd. 2015, 639, 556–562. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Deng, K.K.; Xu, F.J.; Wu, K.; Zheng, M.Y. Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions. J. Alloys Compd. 2014, 617, 979–987. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, E.B.; Nan, X.L.; Zhang, L.; Guan, Z.P.; Jiang, Q.C. A comparison of microstructure and mechanical properties of Mg-9Al-1Zn sheets rolled from as-cast, cast-rolling and as-extruded alloys. Mater. Des. 2016, 89, 167–172. [Google Scholar] [CrossRef]
- Kang, J.; Sun, X.; Deng, K.; Xu, F.; Zhang, X.; Bai, Y. High strength Mg-9Al serial alloy processed by slow extrusion. Mater. Sci. Eng. A 2017, 697, 211–216. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G. Thermal conductivity of as-cast and as-extruded binary Mg–Al alloys. J. Alloys Compd. 2014, 608, 19–24. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G.; Xu, S.W. Thermal conductivity of as-cast and as-extruded binary Mg-Zn alloys. J. Alloys Compd. 2015, 621, 250–255. [Google Scholar] [CrossRef]
- Khan, S.A.; Miyashita, Y.; Mutoh, Y.; Sajuri, Z.B. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Mater. Sci. Eng. A 2006, 420, 315–321. [Google Scholar] [CrossRef]
- Boehlert, C.J.; Knittel, K. The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0-4.4 wt.% Zn. Mater. Sci. Eng. A 2006, 417, 315–321. [Google Scholar] [CrossRef]
- Cai, S.; Lei, T.; Li, N.; Feng, F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng. C 2012, 32, 2570–2577. [Google Scholar] [CrossRef]
- Zhang, E.; Yin, D.; Xu, L.; Yang, L.; Yang, K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Mater. Sci. Eng. C 2009, 29, 987–993. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, L.; Fang, C.; Peng, P.; Ja, F.; Hao, H. Effect of Nd on the microstructure and mechanical properties of Mg-Gd-5Y-2Zn-0.5Zr alloy. Mater. Sci. Eng. A 2013, 586, 19–24. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, D.; Tang, T.; Shen, X.; Jiang, L.; Xu, J.; Pan, F. Effects of Nd addition on microstructure and mechanical properties of Mg-6Zn-1Mn-4Sn alloy. Mater. Sci. Eng. A 2015, 634, 5–13. [Google Scholar] [CrossRef]
- Pan, H.; Pan, F.; Yang, R.; Peng, J.; Zhao, C.; She, J.; Guo, Z.; Tang, A. Thermal and electrical conductivity of binary magnesium alloys. J. Mater. Sci. 2014, 49, 3107–3124. [Google Scholar] [CrossRef]
- Zhong, L.; Peng, J.; Sun, S.; Wang, Y.; Lu, Y.; Pan, F. Microstructure and thermal conductivity of as-cast and as-solutionized Mg-Rare-Earth binary alloys. J. Mater. Sci. Technol. 2017, 33, 1240–1248. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, K.; Li, T.; Li, X.; Li, Y.; Ma, M.; Luo, P. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy. Mater. Des. 2012, 40, 257–261. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Xiao, S.; Chen, Y. Effects of Sn, Ca additions on thermal conductivity of Mg matrix alloys. Mater. Sci. Technol. 2016, 32, 581–587. [Google Scholar] [CrossRef]
- Rzychoń, T.; Kielbus, A. The influence of rare earth, strontium and calcium on the thermal diffusivity of Mg-Al alloys. Defect Diffus. Forum 2011, 312, 824–829. [Google Scholar] [CrossRef]
- Oh, G.-Y.; Jung, Y.-G.; Yang, W.; Kim, S.K. Investigation of thermal conductivity and mechanical properties of Mg-4Zn-0.5Ca-Xy alloys. Mater. Trans. 2015, 56, 1887–1892. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, K.; Zhang, X.; Li, X.; Li, T.; Li, Y.; Ma, M.; Shi, G. Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J. Alloys Compd. 2013, 578, 32–36. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Li, Y.; Luo, D.-M.; Ding, Y.; Hodgson, P. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications. Mater. Sci. Eng. C 2015, 49, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Leitner, J.; Vońka, P.; Sedmidubský, D.; Svoboda, P. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 2010, 497, 7–13. [Google Scholar] [CrossRef]
- Lindemann, A.; Schmidt, J.; Todte, M.; Zeuner, T. Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range. Thermochim. Acta 2002, 382, 269–275. [Google Scholar] [CrossRef]
- Magnesium: Crystal Structures. Available online: https://www.webelements.com/magnesium/crystal_structure.html (accessed on 9 November 2018).
- Song, Y.; Han, E.-H.; Shan, D.; Yin, C.; You, B. The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys. Corros. Sci. 2012, 65, 322–330. [Google Scholar] [CrossRef]
- Berman, R. Thermal Conduction in Solids; Clarendon Press: Oxford, UK, 1976. [Google Scholar]
- Liu, D.; Guo, C.; Chai, L.; Sherman, V.R.; Qin, X.; Dind, Y.; Meyer, M.A. Mechanical properties and corrosion resistance of hot extruded Mg–2.5Zn–1Ca alloy. Mater. Sci. Eng. B 2015, 195, 50–58. [Google Scholar] [CrossRef]
- Rudajevová, A.; Von Buch, F.; Mordike, B.L. Thermal diffusivity and thermal conductivity of MgSc alloys. J. Alloys Compd. 1999, 292, 27–30. [Google Scholar] [CrossRef]
- Peng, J.; Zhong, L.; Wang, Y.; Lu, Y.; Pan, F. Effect of extrusion temperature on the microstructure and thermal conductivity of Mg-2.0Zn-1.0Mn-0.2Ce alloys. Mater. Des. 2015, 87, 914–919. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Li, Y.; Luo, D.-M. Effects of Nd on the microstructures, mechanical properties and in vitro corrosion behavior of cast Mg-1Mn-2Zn-xNd alloys. Mater. Trans. 2015, 56, 253–258. [Google Scholar] [CrossRef]
- Pan, H.; Pan, F.; Peng, J.; Gou, J.; Tang, A.; Wu, L.; Dong, H. High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. J. Alloys Compd. 2013, 578, 493–500. [Google Scholar] [CrossRef]
- Huang, Q.; Tang, A.; Ma, S.; Pan, H.; Song, B.; Gao, Z.; Rashad, M.; Pan, F. Enhancing thermal conductivity of Mg-Sn alloy sheet by cold rolling and aging. J. Mater. Eng. Perform. 2016, 25, 2356–2363. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Z.; Liu, H.; Chen, Y.; Ding, W.; Xiao, S. Electrical and thermal conductivity in Mg–5Sn alloy at different aging status. Mater. Des. 2015, 84, 48–52. [Google Scholar] [CrossRef]
- Li, B.; Hou, L.; Wu, R.; Zhang, J.; Li, X.; Zhang, M. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. J. Alloys Compd. 2017, 722, 772–777. [Google Scholar] [CrossRef]
Alloy Code | Mn | Zn | Nd | Ni | Fe | Al | Mg |
---|---|---|---|---|---|---|---|
Cast1 | 1.29 | 2.42 | 0.28 | 0.01 | 0.02 | - | Bal. |
Cast2 | 1.23 | 2.31 | 0.81 | 0.02 | 0.02 | 0.03 | Bal. |
Cast3 | 1.21 | 2.2 | 1.21 | 0.02 | 0.03 | 0.03 | Bal. |
Alloy Code | A (100) | A (101) | Mg7Zn3 (400) | Mg7Zn3 (622) |
---|---|---|---|---|
Cast1 | 7842 | 86,119 | 905 | 978 |
Cast2 | 5493 | 41,023 | 990 | 1002 |
Cast3 | 3319 | 21,927 | 1090 | 1204 |
Extruded1 | 74,521 | 5027 | 1709 | 1678 |
Extruded2 | 74,255 | 5563 | 1909 | 1860 |
Extruded3 | 47,336 | 5828 | 2050 | 1969 |
Alloy Code | Lattice Parameters | Grain Size | ||
---|---|---|---|---|
a/nm | c/nm | c/a | /μm | |
Pure Mg [26] | 0.32094 | 0.52108 | 1.6236 | – |
Cast1 | 0.32095 | 0.52111 | 1.6236 | 200 |
Cast2 | 0.32088 | 0.52118 | 1.6242 | 155 |
Cast3 | 0.32097 | 0.52142 | 1.6245 | 100 |
Extruded1 | 0.32096 | 0.52130 | 1.6241 | 4~7 |
Extruded2 | 0.32107 | 0.52148 | 1.6242 | 4~7 |
Extruded3 | 0.32109 | 0.52156 | 1.6243 | 4~7 |
Alloy Code | Ultimate Tensile Strength (MPa) | Tensile Yield Strength (MPa) |
---|---|---|
Cast1 | 181 | 55 |
Cast2 | 185 | 57 |
Cast3 | 110 | 41 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.-L.; Liu, J.; Luo, D.-M.; Chen, D.-C. Evaluation of the Effect of Nd Content and Extrusion Process on Thermal Conductivity of Mg-Mn-Zn-Nd Alloys. Crystals 2018, 8, 427. https://doi.org/10.3390/cryst8110427
Zhou Y-L, Liu J, Luo D-M, Chen D-C. Evaluation of the Effect of Nd Content and Extrusion Process on Thermal Conductivity of Mg-Mn-Zn-Nd Alloys. Crystals. 2018; 8(11):427. https://doi.org/10.3390/cryst8110427
Chicago/Turabian StyleZhou, Ying-Long, Jie Liu, Dong-Mei Luo, and Dong-Chu Chen. 2018. "Evaluation of the Effect of Nd Content and Extrusion Process on Thermal Conductivity of Mg-Mn-Zn-Nd Alloys" Crystals 8, no. 11: 427. https://doi.org/10.3390/cryst8110427
APA StyleZhou, Y. -L., Liu, J., Luo, D. -M., & Chen, D. -C. (2018). Evaluation of the Effect of Nd Content and Extrusion Process on Thermal Conductivity of Mg-Mn-Zn-Nd Alloys. Crystals, 8(11), 427. https://doi.org/10.3390/cryst8110427