Computer Modelling of Hafnium Doping in Lithium Niobate
Abstract
:1. Introduction
2. Methodology
2.1. Interatomic Potentials
2.1.1. LiNbO3
2.1.2. HfO2
2.2. Defect Calculations
- (i)
- An Hf4+ ion at a Li+ site, with charge compensation by 3 Li+ vacancies
- (ii)
- An Hf4+ ion at a Li+ site, with charge compensation by 3 Hf4+ ions at Nb5+ sites
- (iii)
- 4 Hf4+ ions at Nb5+ sites, with charge compensation by a Nb5+ ion at a Li+ site
- (iv)
- An Hf4+ ion at a Nb5+ site, with charge compensation by a Nb5+ ion at a Li+ site and 3 Li+ vacancies
- (v)
- 2 Hf4+ ions at Nb5+ sites, with charge compensation by a Nb5+ ion at a Li+ site and 2 Li+ vacancies
- (vi)
- 3 Hf4+ ions at Nb5+ sites, with charge compensation by a Nb5+ ion at a Li+ site and 1 Li+ vacancy
- (vii)
- 2 Hf4+ ions at Nb5+ sites, with charge compensation by an O2− vacancy
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jazbinsek, M.; Zgonik, M. Material tensor parameters of LiNbO3 relevant for electro-and elasto-optics. Appl. Phys. B 2002, 74, 407. [Google Scholar]
- Rauber, A. Current Topics in Materials Science; Kaldis, E., Ed.; North-Holland: Amsterdam, The Netherlands, 1978; Volume 1, p. 481. [Google Scholar]
- Prokhorov, A.M.; Kuzminov, Y.S. Physics and Chemistry of Crystalline Lithium Niobate, 1st ed.; Hilger: New York, NY, USA, 1990. [Google Scholar]
- Wong, K.K. (Ed.) Properties of Lithium Niobate; IEE: London, UK, 2004. [Google Scholar]
- Askin, A.; Boyd, G.D.; Dziedzic, J.M.; Smith, R.G.; Ballman, A.A.; Levinstein, J.J.; Nassau, K. Optically-induced refractive index inhomogeneities in LiNbO3, and LiTaO3. Appl. Phys. Lett. 1966, 9, 72. [Google Scholar] [CrossRef]
- Kokanyan, E.P.; Razzari, L.; Cristiani, I.; Degiorgio, V.; Gruber, J.B. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals. Appl. Phys. Lett. 2004, 84, 1880. [Google Scholar] [CrossRef]
- Jackson, R.A.; Valerio, M.E.G. A new interatomic potential for the ferroelectric and paraelectric phases of LiNbO3. J. Phys. Condens. Matter 2005, 17, 837. [Google Scholar] [CrossRef]
- Araujo, R.M.; Lengyel, K.; Jackson, R.A.; Valerio, M.E.G.; Kovacs, L. Computer modelling of intrinsic and substitutional defects in LiNbO3. Phys. Status Solidi (c) 2007, 4, 1201–1204. [Google Scholar] [CrossRef]
- Araujo, R.M.; Lengyel, K.; Jackson, R.A.; Kovacs, L.; Valerio, M.E.G. A computational study of intrinsic and extrinsic defects in LiNbO3. J. Phys. Condens. Matter 2007, 19, 046211. [Google Scholar] [CrossRef]
- Araujo, R.M.; Valerio, M.E.G.; Jackson, R.A. Computer modelling of trivalent metal dopants in lithium niobite. J. Phys. Condens. Matter 2008, 20, 035201. [Google Scholar] [CrossRef]
- Araujo, R.M.; Valerio, M.E.G.; Jackson, R.A. Computer modelling of hafnium doping in lithium niobite. Proc. R. Soc. A 2014, 470, 0406. [Google Scholar] [CrossRef]
- Mott, N.F.; Littleton, M.J. Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans. Faraday Soc. 1938, 34, 485–499. [Google Scholar] [CrossRef]
- Gale, J.D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997, 93, 629–637. [Google Scholar] [CrossRef]
- Sanders, M.J.; Leslie, M.; Catlow, C.R.A. Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun. 1984, 1271–1273. [Google Scholar] [CrossRef]
- Dick, B.J.; Overhauser, A.W. Theory of the dielectric constants of alkali halide crystals. Phys. Rev. 1958, 112, 90. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Marsh, P. Defect structure dependence on composition in lithium niobite. Acta Crystallogr. B 1986, 42, 61–68. [Google Scholar] [CrossRef]
- Liu, Q.J.; Liu, Z.T.; Feng, L.P.; Xu, B. Electronic structure, effective masses, mechanical and thermo-acoustic properties of cubic HfO2 under pressure. Phys. Status Solidi B 2011, 248, 950–955. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Kong, Y.; Deng, D.; Gao, G.; Li, Y.; Gao, H.; Zhang, L.; Hang, Z.; Chen, S.; et al. The optical damage resistance and absorption spectra of LiNbO3: Hf crystals. J. Phys. Condens. Matter 2006, 18, 3527–3534. [Google Scholar] [CrossRef]
- Kröger, F.A.; Vink, H.J. The origin of the fluorescence in self-activated ZnS, CdS, and ZnO. J. Chem. Phys. 1954, 22, 250. [Google Scholar] [CrossRef]
- Marques, J.G.; Kling, A.; de Jesus, C.M.; Soares, J.C.; da Silva, M.F.; Dieguez, E.; Agulló-Lopez, F. Annealing recovery of neutron irradiated LiNbO3: Hf single crystals. Nucl. Instrum. Methods Phys. Res. B 1998, 141, 326–331. [Google Scholar] [CrossRef]
- Rebouta, L.; Soares, J.C.; Da Silva, M.F.; Sanz Garcia, J.A.; Dieguez, E.; Agulló-Lopez, F. Determination of lattice sites for Eu, Hf and Nd IN LiNbO3 by RBS/channeling experiments. Nucl. Instrum. Methods Phys. Res. B 1990, 50, 428–430. [Google Scholar] [CrossRef]
- Prieto, C.; Zaldo, C.; Fessler, P.; D’Expert, H.; Sanz Garcia, J.A.; Dieguez, E. Lattice position of Hf and Ta in LiNbO3: An extended X-ray-absorption fine-structure study. Phys. Rev. B 1991, 43, 2594–2600. [Google Scholar] [CrossRef]
- Hammoum, R.; Fontana, M.D.; Gilliot, M.; Bourson, P.; Kokanyan, E.P. Site spectroscopy of Hf doping in Hf-doped LiNbO3 crystals. Solid State Commun. 2009, 149, 1967–1970. [Google Scholar] [CrossRef]
Interaction | A (eV) | ρ (Å) | C (eV Å6) |
---|---|---|---|
Nbcore–Oshell | 1425.0 | 0.3650 | 0.0 |
Licore–Oshell | 950.0 | 0.2610 | 0.0 |
Oshell–Oshell | 22,764.0 | 0.1490 | 27.88 |
Shell Parameters | Shell Charge, Y (|e|) | Spring Constant, kr (eV Å−2) | |
O2− | −2.9 | 70.0 | |
3 body Parameters | Force Constant, kθ (eV rad−2) | Equilibrium Angle, θ0 | |
Oshell–Nbcore–Oshell | 0.5776 | 90.0 |
Parameter | Experimental | Calculated (0 K) | ∆% | Calculated (295 K) | ∆% |
---|---|---|---|---|---|
a = b (Å) | 5.1474 | 5.1559 | 0.17 | 5.1868 | 0.77 |
c (Å) | 13.8561 | 13.6834 | 1.24 | 13.7103 | 1.05 |
Interaction | A (eV) | ρ (Å) | C (eV Å6) |
---|---|---|---|
Hfcore–Oshell | 1413.54 | 0.3509 | 0.0 |
Oshell–Oshell | 22764.0 | 0.1490 | 27.88 |
Parameter | Experimental [17] | Calculated (0 K) | ∆% | Calculated (295 K) | ∆% |
---|---|---|---|---|---|
a = b = c (Å) | 5.084000 | 5.084236 | 0.00 | 5.087119 | 0.06 |
Structures | 0 K | 293 K |
---|---|---|
LiNbO3 | −174.57 | −174.66 |
Li2O | −33.16 | −32.92 |
Nb2O5 | −314.37 | −313.99 |
HfO2 | −110.39 | −110.45 |
Defect | Scheme (i) | Scheme (ii) | Scheme (iii) | Scheme (iv) | Scheme (v) | Scheme (vi) | Scheme (vii) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (K) | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 |
Hf4+ | −36.03 | −36.35 | 52.51 | 52.27 | 53.34 | 53.11 | −33.85 | −34.01 | −2.61 | −2.73 | 25.40 | 25.07 | 97.82 | 97.64 |
Defect | Scheme (i) | Scheme (ii) | Scheme (iii) | Scheme (iv) | Scheme (v) | Scheme (vi) | Scheme (vii) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (K) | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 | 0 | 293 |
Hf4+ | 8.26 | 8.04 | 1.65 | 1.48 | 1.86 | 1.69 | 5.25 | 5.11 | 2.12 | 2.09 | 1.49 | 1.42 | 2.28 | 2.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, R.M.; Valerio, M.E.G.; Jackson, R.A. Computer Modelling of Hafnium Doping in Lithium Niobate. Crystals 2018, 8, 123. https://doi.org/10.3390/cryst8030123
Araujo RM, Valerio MEG, Jackson RA. Computer Modelling of Hafnium Doping in Lithium Niobate. Crystals. 2018; 8(3):123. https://doi.org/10.3390/cryst8030123
Chicago/Turabian StyleAraujo, Romel M., Mario E. G. Valerio, and Robert A. Jackson. 2018. "Computer Modelling of Hafnium Doping in Lithium Niobate" Crystals 8, no. 3: 123. https://doi.org/10.3390/cryst8030123
APA StyleAraujo, R. M., Valerio, M. E. G., & Jackson, R. A. (2018). Computer Modelling of Hafnium Doping in Lithium Niobate. Crystals, 8(3), 123. https://doi.org/10.3390/cryst8030123