Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cai, G.F.; Wang, X.; Cui, M.Q.; Darmawan, P.; Wang, J.X.; Eh, A.L.S.; Lee, P.S. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 2014, 12, 258–267. [Google Scholar] [CrossRef]
- Zhang, X.; He, B.L.; Zhao, Y.Y.; Tang, Q.W. A porous ceramic membrane tailored high-temperature supercapacitor. J. Power Sources 2018, 379, 60–67. [Google Scholar] [CrossRef]
- Dubala, D.P.; Gomez-Romero, P.; Sankapald, B.R.; Holze, R. Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy 2015, 11, 377–399. [Google Scholar] [CrossRef] [Green Version]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Energy Environ. Sci. 2018, 4, 2065–2129. [Google Scholar] [CrossRef]
- Kumar, A.; Sanger, A.; Kumar, A.; Chandra, R. Single-step growth of pyramidally textured NiO nanostructures with improved supercapacitive properties. Int. J. Hydrog. Energy 2017, 42, 6080–6087. [Google Scholar] [CrossRef]
- Emamdoust, A.; Shayesteh, S.F. Surface and electrochemical properties of flower-like Cu-NiO compounds. J. Alloy. Compd. 2018, 738, 432–439. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Shen, P.K. Simultaneous Formation of Ultrahigh Surface Area and Three-Dimensional Hierarchical Porous Graphene-Like Networks for Fast and Highly Stable Supercapacitors. Adv. Mater. 2013, 25, 2474–2480. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- An, L.; Xu, K.B.; Li, W.Y.; Liu, Q.; Li, B.; Zou, R.J.; Chen, Z.; Hu, J.Q. Exceptional pseudocapacitive properties of hierarchical NiO ultrafine nanowires grown on mesoporous NiO nanosheets. J. Mater. Chem. A 2014, 2, 12799–12804. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, J.; Fan, Z.J. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762. [Google Scholar] [CrossRef]
- Huang, M.; Li, F.; Zhang, Y.X.; Li, B.; Gao, X. Hierarchical NiO nanoflake coated CuO flower core-shell nanostructures for supercapacitor. Ceram. Int. 2014, 40, 5533–5538. [Google Scholar] [CrossRef]
- Yadav, A.A.; Chavan, U.J. Electrochemical supercapacitive performance of spray-deposited NiO electrodes. J. Electron. Mater. 2018, 47, 3770–3778. [Google Scholar] [CrossRef]
- Dubal, D.P.; Fulari, V.J.; Lokhande, C.D. Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2, thin films. Microporous Mesoporous Mater. 2012, 151, 511–516. [Google Scholar] [CrossRef]
- Gund, G.S.; Dubal, D.P.; Shinde, S.S.; Lokhande, C.D. One step hydrothermal synthesis of micro-belts like β-Ni(OH)2 thin films for supercapacitors. Ceram. Int. 2013, 39, 7255–7261. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, C.; Yang, F.; Zhang, C.C.; Mao, Y.Q.; Cui, S.X.; Wei, Y.H.; Xu, L.C. Cliff-like NiO/Ni3S2 directly grown on Ni foam for battery-type electrode with high area capacity and long cycle stability. Electrochim. Acta 2017, 251, 235–243. [Google Scholar] [CrossRef]
- Dubal, D.P.; Holze, R.; Gomezromero, P. Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices. Sci. Rep. 2014, 4, 7349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfart, F.; Dubal, D.P.; Vidotti, M.; Gómezromero, P. Hybrid core-shell nanostructured electrodes made of polypyrrole nanotubes coated with Ni(OH)2 nanoflakes for high energy-density supercapacitors. RSC Adv. 2016, 6, 15062–15070. [Google Scholar] [CrossRef]
- Cao, M.X.; Yang, S.W.; Zhang, Y.T.; Song, X.X.; Che, Y.L.; Zhang, H.T.; Yu, Y.; Ding, G.Q.; Zhang, G.Z.; Yao, J.Q. Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals. Nanotechnology 2017, 28, 245402. [Google Scholar] [CrossRef] [PubMed]
- Favero, V.O.; Oliveira, D.A.; Lutkenhaus, J.L.; Siqueira, J.R. Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes. J. Mater. Sci. 2018, 53, 6719–6728. [Google Scholar] [CrossRef]
- Lu, F.; Cai, W.; Zhang, Y. ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 2008, 18, 1047–1056. [Google Scholar] [CrossRef]
- Alver, Ü.; Tanrıverdi, A.; Akgül, Ö. Hydrothermal preparation of ZnO electrodes synthesized from different precursors for electrochemical supercapacitors. Synth. Met. 2016, 211, 30–34. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, L. MnO2/ZnO porous film: Electrochemical synthesis and enhanced supercapacitor performances. Thin Solid Films 2015, 597, 44–49. [Google Scholar] [CrossRef]
- Ding, J.J.; Wang, M.Q.; Deng, J.P.; Gao, W.Y.; Yang, Z.; Ran, C.X.; Zhang, X.Y. A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide. J. Alloy. Compd. 2014, 582, 29–32. [Google Scholar] [CrossRef]
- Cai, D.P.; Huang, H.; Wang, D.D.; Liu, B.; Wang, L.L.; Liu, Y.; Li, Q.H.; Wang, T.H. High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co3O4 Core/Shell Heterostructures on Nickel Foam. ACS Appl. Mat. Interfaces 2014, 6, 15905–15912. [Google Scholar] [CrossRef] [PubMed]
- Purushothaman, K.K.; Priya, V.S.; Nagamuthu, S.; Vijayakumar, S.; Muralidharan, G. Synthesising of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 2011, 6, 668–670. [Google Scholar] [CrossRef]
- Borysiewicz, M.A.; Ekielski, M.; Ogorzalek, Z.; Wzorek, M.; Kaczmarski, J.; Wojciechowski, T. Highly transparent supercapacitors based on ZnO/MnO2 nanostructures. Nanoscale 2017, 9, 7577–7587. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.C.; Zhang, G.H.; Zeng, W.; Zhu, J.; Gong, F.L.; Li, F.; Duan, H.G. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 13564–13570. [Google Scholar] [CrossRef]
- Wang, X.B.; Hu, J.J.; Liu, W.D.; Wang, G.Y.; An, J.; Lian, J.S. Ni-Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 2015, 3, 23333–23344. [Google Scholar] [CrossRef]
- Borchert, H.; Haubold, S.; Haase, M.; Weller, H.; McGinley, C.; Riedler, M.; M¨oller, T. Investigation of ZnS passivated InP nanocrystals by XPS. Nano Lett. 2002, 2, 151–154. [Google Scholar] [CrossRef]
- Shi, M.J.; Cui, M.W.; Kang, L.T.; Li, T.T.; Yun, S.; Du, J.; Xua, S.D.; Liu, Y. Porous Ni3(NO3)2(OH)4 nano-sheets for supercapacitors: Facile synthesis and excellent rate performance at high mass loadings. Appl. Surf. Sci. 2018, 427, 678–686. [Google Scholar] [CrossRef]
- Liu, M.C.; Kong, L.B.; Lu, C.; Ma, X.J.; Li, X.M.; Luo, Y.C.; Kang, L. Design and synthesis of CoMoO4-NiMoO4 center dot xH2O bundles with improved electrochemical properties for supercapacitors. J. Mater. Chem. A 2013, 1, 1380–1387. [Google Scholar] [CrossRef]
- Zhang, S.; Pang, Y.; Wang, Y.; Dong, B.; Lu, S.; Li, M.; Ding, S. NiO nanosheets anchored on honeycomb porous carbon derived from wheat husk for symmetric supercapacitor with high performance. J. Alloy. Compd. 2018, 735, 1722–1729. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Wang, Y.; Jia, H.; Chen, S.; Qi, J.; Qu, C.; Cao, J.; Fei, W.; Feng, J. Designed formation of NiO@C@Cu2O hybrid arrays as battery-like electrode with enhanced electrochemical performances. Ceram. Int. 2017, 43, 15410–15417. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.L.; Li, Y.L.; Zhou, J.J.; Chen, C.; Liu, R.; Han, L. Fabrication of hollow n-doped carbon supported ultrathin NiO nanosheets for high-performance supercapacitor. Inorg. Chem. Commun. 2017, 86, 140–144. [Google Scholar] [CrossRef]
- Xi, S.; Zhu, Y.; Yang, Y.; Jiang, S.; Tang, Z. Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors. Nanoscale Res. Lett. 2017, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T.; et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 1774–1779. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Sun, H.M.; Zan, P.; Zhao, L.J.; Lian, J.S. Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J. Mater. Chem. A 2016, 4, 18857–18867. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, L.; Deng, L.J.; Wang, J.; Kang, L.; Liu, Z.H. Graphene—MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater. Res. Bull. 2014, 49, 577–583. [Google Scholar] [CrossRef]
- Ning, P.; Duan, X.; Ju, X.; Lin, X.; Tong, X.; Xi, P.; Wang, T.; Li, Q. Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors. Electrochim. Acta 2016, 210, 754–761. [Google Scholar] [CrossRef]
- Attias, R.; Sharon, D.; Borenstein, A.; Malka, D.; Hana, O.; Luski, S.; Aurbach, D. Asymmetric Supercapacitors Using Chemically Prepared MnO2 as Positive Electrode Materials. Electrochem. Soc. 2017, 164, 2231–2237. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Lu, Y.; Wang, W.; Peng, T.; Zhang, Y.; Guo, Y.; Wang, Y.; Huo, K.; Kim, J.; Luo, Y. Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors. Carbon 2019, 143, 335–342. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, Y.; Yan, M.; Shi, W. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 2018, 512, 419–427. [Google Scholar] [CrossRef]
- He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, A. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, Z.A.; An, N.; Yang, Y.Y.; Li, Z.M.; Wu, H.Y. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. 2014, 118, 22865–22872. [Google Scholar] [CrossRef]
Material | Structure | Specific Capacitance | Reference |
---|---|---|---|
NiO@PC | Hierarchical structure | 57 mF/cm2 at 5 mA/cm2 | [32] |
NiO@C@Cu2O hybrid | Core-shell heterostructure | 2.18 F/cm2 at 1 mA/cm2 | [33] |
HNCS-NiO | Hierarchical structure | 880.6 mF/cm2 at 0.8 mA/cm2 | [34] |
NiO/MnO2 | Heterostructure | 286 mF/cm2 at 0.5 mA/cm2 | [35] |
ZnO/MnO2@carbon cloth | Core-shell structure | 138.7 mF/cm2 at 1 mA/cm2 | [36] |
NiO/Ni(OH)2/PEDOT | Nanoflower structure | 404.1 mF/cm2 at 4 mA/cm2 | [37] |
NZO-12h | Flower-like structure | 3.94 F/cm2 at 5 mA/cm2 | Our work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Zhang, R.; Cheng, K.; Xu, Z.; Yu, P.; Wang, X.; Niu, S. Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time. Crystals 2019, 9, 47. https://doi.org/10.3390/cryst9010047
Zheng J, Zhang R, Cheng K, Xu Z, Yu P, Wang X, Niu S. Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time. Crystals. 2019; 9(1):47. https://doi.org/10.3390/cryst9010047
Chicago/Turabian StyleZheng, Jiahong, Runmei Zhang, Kangkang Cheng, Ziqi Xu, Pengfei Yu, Xingang Wang, and Shifeng Niu. 2019. "Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time" Crystals 9, no. 1: 47. https://doi.org/10.3390/cryst9010047
APA StyleZheng, J., Zhang, R., Cheng, K., Xu, Z., Yu, P., Wang, X., & Niu, S. (2019). Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time. Crystals, 9(1), 47. https://doi.org/10.3390/cryst9010047