Characterization and Structural Analysis of Genkwanin, a Natural Product from Callicarpa americana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Plant Material
2.3. Extraction, Isolation and Crystallization
2.4. Refinement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, Y.S.H.; Ho, Y.L. The Illustration of Common Medicinal Plants in Taiwan; Committee on Chinese Medicine and Pharmacy: Taiwan, China, 2004; Volume 3, p. 40. [Google Scholar]
- Jones, W.P.; Lobo-Echeverri, T.; Mi, Q.; Chai, H.B.; Soejarto, D.D.; Cordell, G.A.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic constituents from the fruiting branches of Callicarpa americana collected in southern Florida. J. Nat. Prod. 2007, 70, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.W.; Cheng, Y.B.; Liaw, C.C.; Chen, C.H.; Guh, J.H.; Hwang, T.L.; Tsai, J.S.; Wang, W.B.; Shen, Y.C. Bioactive diterpenes from Callicarpa longissima. J. Nat. Prod. 2012, 75, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Harrison, L.J.; Vittal, J.J.; Xu, Y.-J.; Goh, S.-H. Four new clerodane diterpenoids from Callicarpa pentandra. J. Nat. Prod. 2000, 63, 1062–1065. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Klun, J.A.; Bryson, C.T.; Kobaisy, M.; Duke, S.O. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J. Agric. Food Chem. 2005, 53, 5948–5953. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; He, H.P.; Gao, S.; Chen, C.X.; Shen, Y.M.; Hao, X.J. Two new diterpenoids from Callicarpa pedunculata. Helv. Chim. Acta 2006, 89, 1017–1022. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, L.H.; Sim, K.Y.; Goh, S.H. Lignanoids and diterpenoids from Callicarpa furfuraceae. Helv. Chim. Acta 2006, 89, 64–72. [Google Scholar] [CrossRef]
- Mei, W.L.; Han, Z.; Cui, H.B.; Zhao, Y.X.; Deng, Y.Y.; Dai, H.F. A new cytotoxic iridoid from Callicarpa nudiflora. Nat. Prod. Res. 2010, 24, 899–904. [Google Scholar] [CrossRef]
- Hu, Y.M.; Shen, Y.M.; Gu, Q.X.; Zuo, G.Y.; Hao, X.J. Studies on chemical constituents of Callicarpa pedunculata. Chin. Tradit. Herb Drugs 2001, 32, 1063–1065. [Google Scholar]
- Jones, W.P.; Kinghorn, A.D. Biologically active natural products of the genus Callicarpa. Curr. Bioact. Compd. 2008, 4, 15–32. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shin, D.H. Volatile constituents from the leaves of Callicarpa japonica Thunb. and their antibacterial activities. J. Agric. Food Chem. 2004, 52, 781–787. [Google Scholar] [CrossRef]
- Woo, E.R.; Yoon, S.H.; Kwak, J.H.; Kim, H.J.; Park, H. Inhibition of gp 120-CD4 interaction by various plant extracts. Phytomed. Int. J. Phytother. Phytopharm. 1997, 4, 53–58. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jeong, E.J.; Lee, H.S.; Kim, Y.C. Acteoside of Callicarpa dichotoma attenuates scopolamine-induced memory impairments. Biol. Pharm. Bull. 2006, 29, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Mabberly, D.J. The Plant-Book: A Portable Dictionary of the Vascular Plants; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Crellin, J.K.P. A Reference Guide to Medicinal Plants: Herbal Medicine Past and Present; Duke University Press: Durham, NC, USA, 1997; p. 551. [Google Scholar]
- Rafinesque, C.S. Medical Flora or Manual of the Medical Botany of the United States of North America; University of Glasgow Library: Philadelphia, PA, USA, 1830; p. 276. [Google Scholar]
- Moerman, D.E. American Medical Ethnobotany. A Reference Dictionary; York, G.P.N., Ed.; Timber Press: Portland, London, UK, 1977; p. 527. [Google Scholar]
- Taylor, L.A. Plants Used as Curatives by Certain Southeastern Tribes; Botanical Museum, Harvard University: Cambridge, MA, UK, 1940; p. 88. [Google Scholar]
- Hartwell, J.L. Plants Used Against Cancer. A Survey; Quarterman Publications: Lawrence, MA, USA, 1982; p. 710. [Google Scholar]
- Tellez, M.R.; Dayan, F.E.; Schrader, K.K.; Wedge, D.E.; Duke, S.O. Composition and some biological activities of the essential oil of Callicarpa americana (L.). J. Agric. Food Chem. 2000, 48, 3008–3012. [Google Scholar] [CrossRef] [PubMed]
- Kai, H.; Koine, T.; Baba, M.; Okuyama, T. Pharmacological effects of Daphne genkwa and Chinese medical prescription, “Jyu-So-To”. Yakugaku Zasshi 2004, 124, 349–354. [Google Scholar] [CrossRef]
- Altinier, G.; Sosa, S.; Aquino, R.P.; Mencherini, T.; Loggia, R.D.; Tubaro, A. Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. J. Agric. Food Chem. 2007, 55, 1718–1723. [Google Scholar] [CrossRef]
- Sadhu, S.K.; Okuyama, E.; Fujimoto, H.; Ishibashi, M.; Yesilada, E. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. J. Ethnopharmacol. 2006, 108, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Chari, V.M.; Sonnenbichler, J. 13C-NMR-Spektren natürlich vorkommender Flavonoide. Tetrahedron. Lett. 1976, 17, 1799–1802. [Google Scholar] [CrossRef]
- Harborne, J.B. The Flavonoids: Advances in Research Since 1986; Springer: Berlin/Heidelberg, Germany, 2009; pp. 448–449. [Google Scholar]
- Cottigli, F.; Loy, G.; Garau, D.; Floris, C.; Caus, M.; Pompei, R.; Bonsignore, L. Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomed. Int. J. Phytother. Phytopharm. 2001, 8, 302–305. [Google Scholar]
- Martini, N.D.; Katerere, D.R.; Eloff, J.N. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004, 93, 207–212. [Google Scholar] [CrossRef]
- Kraft, C.; Jenett-Siems, K.; Siems, K.; Jakupovic, J.; Mavi, S.; Bienzle, U.; Eich, E. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother. Res. PTR 2003, 17, 123–128. [Google Scholar] [CrossRef]
- Kim, A.R.; Zou, Y.N.; Park, T.H.; Shim, K.H.; Kim, M.S.; Kim, N.D.; Kim, J.D.; Bae, S.J.; Choi, J.S.; Chung, H.Y. Active components from Artemisia iwayomogi displaying ONOO(-) scavenging activity. Phytother. Res. PTR 2004, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, F.; Fang, L.; Cai, R.; Zong, C.; Qi, Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PloS ONE 2014, 9, e96741. [Google Scholar] [CrossRef] [PubMed]
- Suh, N.; Luyengi, L.; Fong, H.H.; Kinghorn, A.D.; Pezzuto, J.M. Discovery of natural product chemopreventive agents utilizing HL-60 cell differentiation as a model. Anticancer Res. 1995, 15, 233–239. [Google Scholar] [PubMed]
- Wang, X.; Song, Z.J.; He, X.; Zhang, R.Q.; Zhang, C.F.; Li, F.; Wang, C.Z.; Yuan, C.S. Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APC(Min/+) mice. Int. Immunopharmacol. 2015, 29, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharm. Rev. 2011, 5, 1–12. [Google Scholar] [Green Version]
- Casagrande, F.; Darbon, J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem. Pharm. 2001, 61, 1205–1215. [Google Scholar] [CrossRef]
- Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Thang, D.V.; Sohng, J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzym. Microb. Technol. 2016, 86, 103–116. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Khan, H.; Gowrishankar, S.; Lagoa, R.J.L.; Mahomoodally, F.M.; Khan, Z.; Suroowan, S.; Tewari, D.; Zengin, G.; Hassan, S.T.S.; et al. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharm. Ther. 2019, 194, 107–131. [Google Scholar] [CrossRef]
- Hurko, O. Target-based drug discovery, genetic diseases, and biologics. Neurochem. Int. 2012, 61, 892–898. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- SERNEC. Southeast Regional Network of Expertise and Collections. Available online: http://sernecportal.org/portal/ (accessed on 19 September 2019).
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Gaussian 16 Rev. B.01; Version: Rev. B.01; Gaussian, Inc.: Wallingford, CT, UK, 2016.
- TK Gristmill Software: AIMAll; Version 17.11.14; TAK: Overland Park, KS, USA, 2017.
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- CrystalExplorer 17; Version 17; University of Western Australia: Crawley, AU, Australia, 2017.
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kiyekbayeva, L.; Mohamed, N.M.; Yerkebulan, O.; Mohamed, E.I.; Ubaidilla, D.; Nursulu, A.; Assem, M.; Srivedavyasasri, R.; Ross, S.A. Phytochemical constituents and antioxidant activity of Echinops albicaulis. Nat. Prod. Res. 2018, 32, 1203–1207. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.C.; Park, M.H.; Ryu, H.W.; Lee, J.P.; Kang, M.G.; Park, D.; Park, C.M.; Oh, S.R.; Kim, H. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem. 2019, 83, 317–325. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. B 2004, 60, 627–668. [Google Scholar] [CrossRef]
Crystal Data | |
Chemical formula | C16H12O5 |
Mr | 284.26 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 19.3911 (7), 3.86568 (19), 32.5877 (11) |
V (Å3) | 2442.77 (17) |
Z | 8 |
Radiation type | Cu Kα |
μ (mm−1) | 0.97 |
Crystal size (mm) | 0.28 × 0.03 × 0.02 |
Data collection | |
Diffractometer | XtaLAB Synergy, Dualflex, HyPix |
Absorption correction | Multi-scan CrysAlis PRO 1.171.40.53 (Rigaku Oxford Diffraction, 2019). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Tmin, Tmax | 0.386, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16725, 3900, 2676 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.622 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.131, 1.06 |
No. of reflections | 3900 |
No. of parameters | 384 |
No. of restraints | 337 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.24 |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O2_1—H2_1⋯O1_1 | 1.00 | 1.75 | 2.576 (5) | 137.7 |
O5_1—H5_1⋯O1_1i | 1.00 | 1.77 | 2.749 (5) | 164.3 |
O2_2—H2_2⋯O1_2 | 1.00 | 1.72 | 2.589 (5) | 143.6 |
O5_2—H5_2⋯O1_2ii | 1.00 | 1.80 | 2.747 (5) | 156.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porras, G.; Bacsa, J.; Tang, H.; Quave, C.L. Characterization and Structural Analysis of Genkwanin, a Natural Product from Callicarpa americana. Crystals 2019, 9, 491. https://doi.org/10.3390/cryst9100491
Porras G, Bacsa J, Tang H, Quave CL. Characterization and Structural Analysis of Genkwanin, a Natural Product from Callicarpa americana. Crystals. 2019; 9(10):491. https://doi.org/10.3390/cryst9100491
Chicago/Turabian StylePorras, Gina, John Bacsa, Huaqiao Tang, and Cassandra L. Quave. 2019. "Characterization and Structural Analysis of Genkwanin, a Natural Product from Callicarpa americana" Crystals 9, no. 10: 491. https://doi.org/10.3390/cryst9100491
APA StylePorras, G., Bacsa, J., Tang, H., & Quave, C. L. (2019). Characterization and Structural Analysis of Genkwanin, a Natural Product from Callicarpa americana. Crystals, 9(10), 491. https://doi.org/10.3390/cryst9100491