A New High-Pressure Phase Transition in Natural Gedrite
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Papike, J.; Ross, M. Gedrites: Crystal structures and intracrystalline cation distributions. Am. Mineral. 1970, 55, 1945–1972. [Google Scholar]
- Papike, J.J.; Cameron, M. Crystal chemistry of silicate minerals of geophysical interest. Rev. Geophys. 1976, 14, 37–80. [Google Scholar] [CrossRef]
- Law, A.D.; Whittaker, E.J.W. Rotated and extended model structures in amphiboles and pyroxenes. Mineral. Mag. 1980, 43, 565–574. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R. Amphiboles: Crystal chemistry. Rev. Mineral. Geochem. 2007, 67, 1–54. [Google Scholar] [CrossRef]
- Tuisku, P. Contact zone interaction of metabasites with metapelites: Amphibolite facies mineral assemblages, chemical profiles and their origin, the Puolankajärvi Formation, Finland. Lithos 1991, 27, 279–300. [Google Scholar] [CrossRef]
- Schumacher, J.C.; Robinson, P. Mineral chemistry and metasomatic growth of aluminous enclaves in gedrite—cordierite-gneiss from southwestern new hampshire, USA. J. Petrol. 1987, 28, 1033–1073. [Google Scholar] [CrossRef]
- Zema, M.; Welch, M.D.; Oberti, R. High-T behaviour of gedrite: Thermoelasticity, cation ordering and dehydrogenation. Contrib. Mineral. Petrol. 2012, 163, 923–937. [Google Scholar] [CrossRef]
- Warren, B., II. The structure of tremolite H2Ca2Mg5(SiO3)8. Z. Krist.-Cryst. Mater. 1930, 72, 42–57. [Google Scholar] [CrossRef]
- Warren, В.; Modell, D. 11. The structure of anthophyllite H2Mg7(SiO3)8. Z. Krist.-Cryst. Mater. 1930, 75, 161–178. [Google Scholar] [CrossRef]
- Carpenter, M. Amphibole microstructures: Some analogies with phase transformations in pyroxenes. Mineral. Mag. 1982, 46, 395–397. [Google Scholar] [CrossRef]
- Zhang, J.S.; Dera, P.; Bass, J.D. A new high-pressure phase transition in natural Fe-bearing orthoenstatite. Am. Mineral. 2012, 97, 1070–1074. [Google Scholar] [CrossRef]
- Dera, P.; Finkelstein, G.J.; Duffy, T.S.; Downs, R.T.; Meng, Y.; Prakapenka, V.; Tkachev, S. Metastable high-pressure transformations of orthoferrosilite Fs82. Phys. Earth Planet. Inter. 2013, 221, 15–21. [Google Scholar] [CrossRef]
- Finkelstein, G.J.; Dera, P.K.; Duffy, T.S. Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction. Phys. Earth Planet. Inter. 2015, 244, 78–86. [Google Scholar] [CrossRef]
- Welch, M.D.; Gatta, D.; Rotiroti, N. The high-pressure behavior of orthorhombic amphiboles. Am. Mineral. 2011, 96, 623. [Google Scholar] [CrossRef]
- Nestola, F.; Pasqual, D.; Welch, M.D.; Oberti, R. The effects of composition upon the high-pressure behaviour of amphiboles: Compression of gedrite to 7 GPa and a comparison with anthophyllite and proto-amphibole. Mineral. Mag. 2012, 76, 987–995. [Google Scholar] [CrossRef]
- Welch, M.D.; Caámara, F.; Della Ventura, G.; Iezzi, G. Non-Ambient in situ studies of amphiboles. Rev. Mineral. Geochem. 2007, 67, 223–260. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Oberti, R.; Hawthorne, F.C.; Cannillo, E.; Caámara, F. Long-range order in amphiboles. Rev. Mineral. Geochem. 2007, 67, 125–171. [Google Scholar] [CrossRef]
- Schindler, M.; Sokolova, E.; Abdu, Y.; Hawthorne, F.C.; Evans, B.W.; Ishida, K. The crystal chemistry of the gedrite-group amphiboles. I. Crystal structure and site populations. Mineral. Mag. 2008, 72, 703–730. [Google Scholar] [CrossRef]
- Zhang, D.; Dera, P.K.; Eng, P.J.; Stubbs, J.E.; Zhang, J.S.; Prakapenka, V.B.; Rivers, M.L. High pressure single crystal diffraction at PX^2. J. Vis. Exp. 2017, 199, 54660. [Google Scholar] [CrossRef]
- Boehler, R.; de Hantsetters, K. New anvil designs in diamond-cells. High Press. Res. 2004, 24, 391–396. [Google Scholar] [CrossRef]
- Dewaele, A.; Torrent, M.; Loubeyre, P.; Mezouar, M. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Phys. Rev. B 2008, 78, 104102. [Google Scholar] [CrossRef]
- Rivers, M.; Prakapenka, V.B.; Kubo, A.; Pullins, C.; Holl, C.M.; Jacobsen, S.D. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the advanced photon source. High Press. Res. 2008, 28, 273–292. [Google Scholar] [CrossRef]
- Finger, L.; Hazen, R.M.; Zou, G.; Mao, H.; Bell, P.M. Structure and compression of crystalline argon and neon at high pressure and room temperature. Appl. Phys. Lett. 1981, 39, 892–894. [Google Scholar] [CrossRef]
- Jephcoat, A.P.; Mao, H.; Bell, P.M. Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media. J. Geophys. Res.: Solid Earth 1986, 91, 4677–4684. [Google Scholar] [CrossRef]
- Zha, C.-S.; Mao, H.; Hemley, R.J. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl. Acad. Sci. USA 2000, 97, 13494–13499. [Google Scholar] [Green Version]
- Dera, P. GSE-ADA Data Analysis Program for Monochromatic Single Crystal Diffraction with Area Detector; GeoSoilEnviroCARS: Argonne, IL, USA, 2007. [Google Scholar]
- Dera, P.; Zhuravlev, K.; Prakapenka, V.; Rivers, M.L.; Finkelstein, G.J.; Grubor-Urosevic, O. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press. Res. 2013, 33, 466–484. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. Powder cell: A program for the representation and manipulation of crystal structure and calculation of the resulting x-ray powder pattern. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Robinson, K.; Gibbs, G.; Ribbe, P. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567–570. [Google Scholar] [CrossRef]
- Bina, C.R.; Stein, S.; Marton, F.C.; Van Ark, E.M. Implications of slab mineralogy for subduction dynamics. Phys. Earth Planet. Inter. 2001, 127, 51–66. [Google Scholar] [CrossRef]
- Wiens, D.A. Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties. Phys. Earth Planet. Inter. 2001, 127, 145–163. [Google Scholar] [CrossRef]
- Bina, C.R.; Kawakatsu, H. Buoyancy, bending, and seismic visibility in deep slab stagnation. Phys. Earth Planet. Inter. 2010, 183, 330–340. [Google Scholar] [CrossRef]
- Agrusta, R.; Hunen, J.; Goes, S. The effect of metastable pyroxene on the slab dynamics. Geophys. Res. Lett. 2014, 41, 8800–8808. [Google Scholar] [CrossRef] [Green Version]
- King, S.D.; Frost, D.J.; Rubie, D.C. Why cold slabs stagnate in the transition zone. Geology 2015, 43, 231–234. [Google Scholar] [CrossRef]
- Akella, J.; Winkler, H.G. Orthorhombic amphibole in some metamorphic reactions. Contrib. Mineral. Petrol. 1966, 12, 1–12. [Google Scholar] [CrossRef]
- Inoue, T.; Irifune, T.; Yurimoto, H.; Miyagi, I. Decomposition of K-amphibole at high pressures and implications for subduction zone volcanism. Phys. Earth Planet. Inter. 1998, 107, 221–231. [Google Scholar] [CrossRef]
- Trønnes, R. Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral. Petrol. 2002, 74, 129–148. [Google Scholar] [CrossRef]
- Comboni, D.; Lotti, P.; Gatta, G.D.; Merlini, M.; Liermann, H.P.; Frost, D.J. Pargasite at high pressure and temperature. Phys. Chem. Miner. 2018, 45, 259–278. [Google Scholar] [CrossRef]
- Mandler, B.E.; Grove, T.L. Controls on the stability and composition of amphibole in the Earth’s mantle. Contrib. Mineral. Petrol. 2016, 171, 68. [Google Scholar] [CrossRef]
- Yamasaki, T.; Seno, T. Double seismic zone and dehydration embrittlement of the subducting slab. J. Geophys. Res.: Solid Earth 2003, 108, 2212. [Google Scholar] [CrossRef]
- Poli, S.; Schmidt, M.W. Petrology of subducted slabs. Annu. Rev. Earth Planet. Sci. 2002, 30, 207–235. [Google Scholar] [CrossRef]
- Green, H.W.; Zhou, Y. Transformation-induced faulting requires an exothermic reaction and explains the cessation of earthquakes at the base of the mantle transition zone. Tectonophysics 1996, 256, 39–56. [Google Scholar] [CrossRef]
- Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, D.C. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys. 1996, 34, 261–306. [Google Scholar] [CrossRef]
- Ganguly, J.; Freed, A.M.; Saxena, S.K. Density profiles of oceanic slabs and surrounding mantle: Integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660km discontinuity. Phys. Earth Planet. Inter. 2009, 172, 257–267. [Google Scholar] [CrossRef]
- Raleigh, C.B. Tectonic implications of serpentinite weakening. Geophys. J. Int. 1967, 14, 113–118. [Google Scholar] [CrossRef]
- Raleigh, C.B.; Paterson, M.S. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 1965, 70, 3965–3985. [Google Scholar] [CrossRef]
- Green, H.W.; Houston, H. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci. 1995, 23, 169–213. [Google Scholar] [CrossRef]
- Kirby, S. Interslab earthquakes and phase changes in subducting lithosphere. Rev. Geophys. 1995, 33, 287–297. [Google Scholar] [CrossRef]
- Peacock, S.M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 2001, 29, 299–302. [Google Scholar] [CrossRef]
- Hacker, B.R.; Peacock, S.M.; Abers, G.A.; Holloway, S.D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res.: Solid Earth 2003, 108, 2030. [Google Scholar] [CrossRef]
- Jung, H.; Green, H.W., II; Dobrzhinetskaya, L.F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 2004, 428, 545. [Google Scholar] [CrossRef] [PubMed]
- Zahradník, J.; Čížková, H.; Bina, C.R.; Sokos, E.; Janský, J.; Tavera, H.; Carvalho, J. A recent deep earthquake doublet in light of long-term evolution of Nazca subduction. Sci. Rep. 2017, 7, 45153. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.; Turner, S.; Handley, H.; Macpherson, C.; Dosseto, A. Amphibole “sponge” in arc crust? Geology 2007, 35, 787–790. [Google Scholar] [CrossRef]
- Wunder, B.; Wirth, R.; Gottschalk, M. Antigorite pressure and temperature dependence of polysomatism and water content. Eur. J. Mineral. 2001, 13, 485–496. [Google Scholar] [CrossRef]
- Carlson, R.L.; Miller, D.J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys. Res. Lett. 2003, 30, 1250. [Google Scholar] [CrossRef]
- Green, H.; Shi, F.; Bozhilov, K.; Xia, G.; Reches, Z. Phase transformation and nanometric flow cause extreme weakening during fault slip. Nat. Geosci. 2015, 8, 484–489. [Google Scholar] [CrossRef]
- Hacker, B.R.; Christie, J.M. Brittle/ductile and plastic/cataclastic transitions in experimentally deformed and metamorphosed amphibolite. Geophys. Monogr. 1990, 56, 127–147. [Google Scholar]
- Konrad-Schmolke, M.; Halama, R.; Wirth, R.; Thomen, A.; Klitscher, N.; Morales, L.; Schreiber, A.; Wilke, F.D.H. Mineral dissolution and reprecipitation mediated by an amorphous phase. Nat. Commun. 2018, 9, 1637. [Google Scholar] [CrossRef]
- Ferrand, T.P.; Hilairet, N.; Incel, S.; Deldicque, D.; Labrousse, L.; Gasc, J.; Renner, J.; Wang, Y.; Green, H.W.; Schubnel, A. Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nat. Commun. 2017, 8, 15247. [Google Scholar] [CrossRef] [Green Version]
- Yong, T.; Dera, P.; Zhang, D. Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: A new high-pressure clinoamphibole polymorph. Phys. Chem. Miner. 2019, 46, 215–227. [Google Scholar]
Constituent | Wt.% | Range | Stand. dev. | Probe Standard * | Crystal | Line | Cations/Formula |
---|---|---|---|---|---|---|---|
FeO | 18.36 | 17.85–18.70 | 0.29 | Garnet, Verma (Mn) | LiF | Kα | 2.245 |
MgO | 16.69 | 16.22–17.07 | 0.23 | Chromite USNM 117075 | TAP | Kα | 3.637 |
Na2O | 1.52 | 1.45–1.66 | 0.06 | Albite, Amelia | TAP | Kα | 0.431 |
Al2O3 | 14.71 | 14.24–15.39 | 0.37 | Chromite USNM 117075 | TAP | Kα | 2.535 |
SiO2 | 44.57 | 43.59–45.05 | 0.43 | Albite, Amelia | TAP | Kα | 6.517 |
CaO | 0.14 | 0.12–0.16 | 0.01 | Diopside-2 (UCLA) | PETH | Kα | 0.022 |
MnO | 0.03 | 0–0.07 | 0.02 | Garnet, Verma (Mn) | LiF | Kα | 0.004 |
Cl | 0.00 | 0–0.02 | 0.01 | Scapolite | PETH | Kα | 0 |
TiO2 | 0.16 | 0.1–0.22 | 0.03 | Sphene glass | LiFH | Kα | 0 |
K2O | 0.01 | 0–0.03 | 0.01 | Orthoclase (OR-1) | PETH | Kα | 0.002 |
Cr2O3 | 0.02 | 0–0.07 | 0.02 | Chromite USNM 117075 | LiFH | Kα | 0.003 |
Total | 96.21 | ||||||
Garnet, Verma (Mn) = SiO2: 36.88, Al2O3: 20.82, FeO: 18.04, CaO: 0.24, MnO: 24.6 Chromite USNM 117075 = Al2O3: 9.92, FeO: 13.04, MgO:15.2, MnO: 0.1, TiO2: 0.12, Cr2O3: 60.5, NiO: 0.16, U2O3: 0.09 Albite, Amelia = SiO2: 68.75, Al2O3: 19.43, Fe2O3: 0.02, Na2O: 11.7, K2O: 0.1 Diopside-2 (UCLA) = SiO2: 55.27, Al2O3: 0.05, FeO: 0.94, MgO: 18.29, CaO: 25.47, MnO: 0.1, Na2O: 0.05, TiO2: 0.06 Scapolite = SiO2: 49.78, Al2O3: 25.05, FeO: 0.17, CaO: 13.58, Na2O: 5.2, K2O: 0.94, Cl: 1.43, CO2: 2.5, SO3: 1.32, H2O+: 0.21 Sphene glass: SiO2: 30.65, CaO: 28.6, TiO2: 40.75 Orthoclase (OR-1): SiO2: 64.39, Al2O3: 18.58, FeO: 0.03, Na2O: 1.14, K2O: 14.92, BaO: 0.82, SrO: 0.035, NiO: 0.03, U2O3: 0.08, SO3: 0.03, H2O+: 0.08 |
Phase | Gedrite | Gedrite | β-gedrite |
---|---|---|---|
Wavelength (Å) | 0.560 | 0.434 | 0.434 |
Pressure (GPa) | Ambient | 10.6(5) | 21(1) |
Temperature (K) | 298 | 298 | 298 |
θ range for data collection | 2.502–30.733 | 2.509–23.120 | 2.472–23.133 |
No. of reflections collected | 20450 | 2898 | 3083 |
No. of independent reflections | 5597 | 532 | 1073 |
No. of restraints | 7 | 0 | 0 |
No. of parameters refined | 206 | 87 | 173 |
Limiting indices | −30 ≤ h ≤ 33 | −9 ≤ h ≤ 14 | −12 ≤ h ≤ 13 |
−32 ≤ k ≤ 26 | −18 ≤ k ≤ 21 | −21 ≤ k ≤ 17 | |
−9 ≤ l ≤ 9 | −9 ≤ l ≤ 5 | −9 ≤ l ≤ 9 | |
Space Group | Pnma | Pnma | P21/m |
Unit-cell dimensions | a = 18.5385(5) Å | a = 17.823(3) Å | a = 17.514(3) Å |
b = 17.8286(4) Å | b = 17.427(1) Å | b = 17.077(1) Å, β = 92.882° | |
c = 5.2780(1) Å | c = 5.1598(1) Å | c = 4.9907(2) Å | |
Rint | 0.0395 | 0.0976 | 0.1126 |
Refinement | F2 | F2 | F2 |
Goodness-of-fit on F2 | 1.228 | 1.256 | 1.184 |
wR2 [I>2sigma(I)] | 0.1293 | 0.1872 | 0.2026 |
R1 [I>2sigma(I)] | 0.0614 | 0.0846 | 0.0961 |
Pressure (GPa) | a (Å) | b (Å) | c (Å) | β (°) | V (Å3) | Space Group |
---|---|---|---|---|---|---|
0 | 18.5383(5) | 17.8286(4) | 5.2780(1) | 90 | 1744.44(1) | Pnma |
1.84(9) | 18.416(4) | 17.754(1) | 5.2574(2) | 90 | 1718.9(4) | Pnma |
4.3(2) | 18.223(5) | 17.651(1) | 5.2266(3) | 90 | 1681.2(5) | Pnma |
10.6(5) | 17.823(3) | 17.427(1) | 5.1598(1) | 90 | 1602.6(3) | Pnma |
15.1(7) | 17.591(8) | 17.301(2) | 5.1256(6) | 90 | 1560.0(7) | Pnma |
21(1) | 17.514(3) | 17.077(1) | 4.9907(2) | 92.882(6) | 1490.82(5) | P21/m |
27(1) | 17.247(9) | 16.908(3) | 4.0907(5) | 93.55(1) | 1429.06(8) | P21/m |
24(1) | 17.355(4) | 16.975(1) | 4.9384(2) | 93.456(7) | 1452.3(3) | P21/m |
22(1) | 17.418(5) | 17.016(2) | 4.9726(3) | 93.214(9) | 1471.5(5) | P21/m |
20(1) | 17.456(4) | 17.039(1) | 4.9915(2) | 93.058(8) | 1482.5(4) | P21/m |
15.8(8) | 17.605(9) | 17.215(3) | 5.0390(5) | 92.45(1) | 1525.8(8) | P21/m |
14.2(7) | 17.585(6) | 17.298(2) | 5.1245(3) | 90 | 1558.9(5) | Pnma |
6.1(3) | 18.01(1) | 17.570(7) | 5.199(1) | 90 | 1646(2) | Pnma |
4.0(2) | 18.207(5) | 17.655(2) | 5.2291(3) | 90 | 1680.9(5) | Pnma |
Polyhedra | Average Bond Length (Å) | Polyhedral Volume (Å3) | Quadratic Elongation | Bond Angle Variance (σ2) |
---|---|---|---|---|
Gedrite at ambient pressure, Pnma | ||||
M1 | 2.0934 | 11.93 | 1.0169 | 53.8375 |
M2 | 1.9941 | 10.47 | 1.0068 | 21.9492 |
M3 | 2.0829 | 11.62 | 1.0239 | 76.1937 |
M4 | 2.2025 | 13.01 | 1.0666 | 211.4892 |
Gedrite at 10.6(5) GPa, Pnma | ||||
M1 | 2.0527 | 11.34 | 1.0114 | 37.9025 |
M2 | 1.9510 | 9.82 | 1.0052 | 17.0948 |
M3 | 2.0417 | 11.10 | 1.0150 | 49.4618 |
M4 | 2.1360 | 11.88 | 1.0626 | 215.8653 |
β-Gedrite at 21(1) GPa, P21/m | ||||
M1 | 2.0236 | 10.91 | 1.0082 | 26.7785 |
M1′ | 1.9844 | 10.28 | 1.0086 | 28.3585 |
M2 | 1.9207 | 9.39 | 1.0040 | 13.2891 |
M2′ | 1.9211 | 9.39 | 1.0048 | 15.5441 |
M3 | 1.9992 | 10.44 | 1.0138 | 46.4812 |
M3′ | 1.9764 | 10.10 | 1.0124 | 41.5350 |
M4 | 2.1090 | 12.09 | 1.0245 | 75.6850 |
M4′ | 2.0552 | 10.95 | 1.0381 | 131.6104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, T.; Bina, C.R.; Finkelstein, G.J.; Zhang, D.; Dera, P. A New High-Pressure Phase Transition in Natural Gedrite. Crystals 2019, 9, 521. https://doi.org/10.3390/cryst9100521
Yong T, Bina CR, Finkelstein GJ, Zhang D, Dera P. A New High-Pressure Phase Transition in Natural Gedrite. Crystals. 2019; 9(10):521. https://doi.org/10.3390/cryst9100521
Chicago/Turabian StyleYong, Tommy, Craig R. Bina, Gregory J. Finkelstein, Dongzhou Zhang, and Przemyslaw Dera. 2019. "A New High-Pressure Phase Transition in Natural Gedrite" Crystals 9, no. 10: 521. https://doi.org/10.3390/cryst9100521
APA StyleYong, T., Bina, C. R., Finkelstein, G. J., Zhang, D., & Dera, P. (2019). A New High-Pressure Phase Transition in Natural Gedrite. Crystals, 9(10), 521. https://doi.org/10.3390/cryst9100521