New Tetragonal ReGa5(M) (M = Sn, Pb, Bi) Single Crystals Grown from Delicate Electrons Changing
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Poole, C.K.; Farach, H.A.; Creswick, R.J. Handbook of Superconductivity; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Henning, R.W.; Corbett, J.D. Formation of Isolated Nickel-Centered Gallium Clusters in Na10Ga10Ni and a 2-D Network of Gallium Octahedra in K2Ga3. Inorg. Chem. 1999, 38, 3883–3888. [Google Scholar] [CrossRef]
- Belin, C.; Tillard-Charbonnel, M. Frameworks of clusters in alkali metal-gallium phases: Structure, bonding and properties. Prog. Solid State Chem. 1993, 22, 59–109. [Google Scholar] [CrossRef]
- Henning, R.W.; Corbett, J.D. Cs8Ga11, a New Isolated Cluster in a Binary Gallium Compound. A Family of Valence Analogues A8Tr11X: A = Cs, Rb; Tr = Ga, In, Tl; X. = Cl, Br, I. Inorg. Chem. 1997, 36, 6045–6049. [Google Scholar] [CrossRef] [PubMed]
- Kauzlarich, S.M.; Brown, S.R.; Snyder, G.J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 2099–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, K. Structural and Bonding Patterns in Cluster Chemistry. In Advances in Inorganic Chemistry and Radiochemistry; Emeléus, H.J., Sharpe, A.G., Eds.; Academic Press: Cambridge, MA, USA, 1976; pp. 1–66. [Google Scholar]
- Ellinger, F.H.; Zachariasen, W.H. The crystal structures of PuGa4 and PuGa6. Acta Crystallogr. 1965, 19, 281–283. [Google Scholar] [CrossRef]
- Curro, N.J.; Caldwell, T.; Bauer, E.D.; Morales, L.A.; Graf, M.J.; Bang, Y.; Balatsky, A.V.; Thompson, J.D.; Sarrao, J.L. Unconventional superconductivity in PuCoGa5. Nature 2005, 434, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Neha, P.; Sivaprakash, P.; Ishigaki, K.; Kalaiselvan, G.; Manikandan, K.; Dhaka, R.S.; Uwatoko, Y.; Arumugam, S.; Patnaik, S. Nuanced superconductivity in endohedral gallide Mo8Ga41. Mater. Res. Express 2018, 6, 016002. [Google Scholar] [CrossRef]
- Tillard, M.; Belin, C. Investigation in the Ga-rich side of the Mn–Ga system: Synthesis and crystal structure of MnGa4 and MnGa5−x (x ~ 0.15). Intermetallics 2012, 29, 147–154. [Google Scholar] [CrossRef]
- Shibayama, T.; Nohara, M.; Aruga Katori, H.; Okamoto, Y.; Hiroi, Z.; Takagi, H. Superconductivity in Rh2Ga9 and Ir2Ga9 without Inversion Symmetry. J. Phys. Soc. Jpn. 2007, 76, 073708. [Google Scholar] [CrossRef]
- Belgacem-Bouzida, A.; Djaballah, Y.; Notin, M. Calorimetric measurement of the intermetallic compounds Cr3Ga and CrGa4 and thermodynamic assessment of the (Cr–Ga) system. J. Alloys Compd. 2005, 397, 155–160. [Google Scholar] [CrossRef]
- Yannello, V.J.; Kilduff, B.J.; Fredrickson, D.C. Isolobal Analogies in Intermetallics: The Reversed Approximation MO Approach and Applications to CrGa4- and Ir3Ge7-Type Phases. Inorg. Chem. 2014, 53, 2730–2741. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Luo, H.; Phelan, B.F.; Klimczuk, T.; Cevallos, F.A.; Cava, R.J. Endohedral gallide cluster superconductors and superconductivity in ReGa5. Proc. Natl. Acad. Sci. USA 2015, 112, E7048–E7054. [Google Scholar] [CrossRef] [PubMed]
- Dinnebier, R.E.; Billinge, S.J.L. Chapter 1. Principles of Powder Diffraction. In Powder Diffraction; Dinnebier, R.E., Billinge, S.J.L., Eds.; Royal Society of Chemistry: Cambridge, MA, USA, 2008; pp. 1–19. [Google Scholar]
- Rodríguez-Carvajal, J. An Introduction to the Program FullProf 2000; Laboratoire Leon Brillouin (CEA-CNRS): Saclay, Paris, France, 2001. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O.K.; Jepsen, O. Explicit, First-Principles Tight-Binding Theory. Phys. Rev. Lett. 1984, 53, 2571–2574. [Google Scholar] [CrossRef]
- Krier, G.; Jepsen, O.; Burkhardt, A.; Andersen, O. The TB-LMTO-ASA Program; Max-Planck-Institut fur Festkoorperforschung: Stuttgart, Germany, 1995. [Google Scholar]
- Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis as Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461–5466. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O.K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060–3083. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, W.R.L.; Andersen, O.K. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 1986, 34, 2439–2449. [Google Scholar] [CrossRef] [PubMed]
- Grin, Y.; Wedig, U.; Wagner, F.; von Schnering, H.G.; Savin, A. The analysis of “empty space” in the PdGa5 structure. J. Alloys Compd. 1997, 255, 203–208. [Google Scholar] [CrossRef]
- Srivichitranond, L.C.; Seibel, E.M.; Xie, W.; Sobczak, Z.; Klimczuk, T.; Cava, R.J. Superconductivity in a new intermetallic structure type based on endohedral Ta@Ir7Ge4 clusters. Phys. Rev. B 2017, 95, 174521. [Google Scholar] [CrossRef]
Refined Formula | ReGa4.96(9)(Sn) | ReGa5.08(5)(Pb) | ReGa5.13(5)(Bi) |
---|---|---|---|
FW (g/mol) | 532.19 | 540.55 | 543.86 |
Space group; Z | P 4/m n c; 4 | P 4/m n c; 4 | P 4/m n c; 4 |
a (Å) | 6.4680(9) | 6.4830(13) | 6.474(2) |
c (Å) | 10.166(2) | 10.229(2) | 10.213(4) |
V (Å3) | 425.29(15) | 429.9(2) | 428.0(3) |
Extinction Coefficient | 0.0017(4) | 0.0037(3) | 0.0044(3) |
θ range (°) | 3.734–33.135 | 3.721–33.166 | 3.726–33.240 |
No. reflections; Rint | 5007; 0.0646 | 5731; 0.0700 | 5798; 0.1039 |
No. independent reflections | 429 | 436 | 438 |
No. parameters | 30 | 29 | 30 |
R1; ωR2 (I > 2δ(I)) | 0.0397; 0.0932 | 0.0284; 0.0552 | 0.0263; 0.0464 |
Goodness of fit | 1.311 | 1.197 | 0.999 |
Diffraction peak and hole (e−/Å3) | 2.713; −2.981 | 1.572; −2.359 | 1.822; −1.863 |
Atom | Wyck. | x | y | z | Occ. | Ueq |
---|---|---|---|---|---|---|
ReGa4.96(9)(Sn) | ||||||
Re | 4e | 0 | 0 | 0.3451(1) | 1 | 0.008(1) |
Ga2 | 8h | 0.4535(3) | 0.1808(3) | 0 | 1 | 0.016(1) |
Ga3 | 8g | 0.7431(3) | 0.2431(3) | ¼ | 1 | 0.045(1) |
Ga4 | 4e | 0 | 0 | 0.051(3) | 0.18(3) | 0.021(8) |
Ga5 | 16i | 0.0426(18) | 0.096(2) | 0.0947(8) | 0.20(1) | 0.028(4) |
ReGa5.08(5)(Pb) | ||||||
Re | 4e | 0 | 0 | 0.3453(1) | 1 | 0.007(1) |
Ga2 | 8h | 0.4622(2) | 0.1816(2) | 0 | 1 | 0.016(1) |
Ga3 | 8g | 0.7462(2) | 0.2462(2) | ¼ | 1 | 0.040(1) |
Ga4 | 2a | 0 | 0 | 0 | 0.75(1) | 0.022(1) |
Ga5 | 16i | 0.0389(11) | 0.0883(19) | 0.0970(5) | 0.18(1) | 0.024(2) |
ReGa5.13(5)(Bi) | ||||||
Re | 4e | 0 | 0 | 0.3451(1) | 1 | 0.006(1) |
Ga2 | 8h | 0.4692(1) | 0.1821(1) | 0 | 1 | 0.018(1) |
Ga3 | 8g | 0.7467(1) | 0.2467(1) | ¼ | 1 | 0.033(1) |
Ga4 | 4e | 0 | 0 | 0.0318(3) | 0.62(1) | 0.012(1) |
Ga5 | 16i | 0.039(2) | 0.079(5) | 0.1001(6) | 0.13(1) | 0.027(3) |
ReGa4.96(Sn) | ||
Atom1 | Atom2 | Distances (Å) |
Re | Ga2 | 2.614(2) |
Re | Ga3 | 2.484(2) |
Re | Ga4 | 2.99(4) |
Re | Ga5 | 2.635(9) |
Ga5 | Ga5 | 1.36(3) (diagonally along the b axis) |
ReGa5.08(Pb) | ||
Atom1 | Atom2 | Distances (Å) |
Re | Ga2 | 2.612(1) |
Re | Ga3 | 2.491(1) |
Re | Ga4 | 3.5322(6) |
Re | Ga5 | 2.616(6) |
Ga5 | Ga5 | 1.25(1) (diagonally along the b axis) |
ReGa5.13(Bi) | ||
Atom1 | Atom2 | Distances (Å) |
Re | Ga2 | 2.604(1) |
Re | Ga3 | 2.487(1) |
Re | Ga4 | 3.200(4) |
Re | Ga5 | 2.566(8) |
Ga5 | Ga5 | 1.14(4) (diagonally along the b axis) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, M.; Górnicka, K.; Mudiyanselage, R.S.D.; Klimczuk, T.; Xie, W.
New Tetragonal ReGa5(M)
Marshall M, Górnicka K, Mudiyanselage RSD, Klimczuk T, Xie W.
New Tetragonal ReGa5(M)
Marshall, Madalynn, Karolina Górnicka, Ranuri S. Dissanayaka Mudiyanselage, Tomasz Klimczuk, and Weiwei Xie.
2019. "New Tetragonal ReGa5(M)
Marshall, M., Górnicka, K., Mudiyanselage, R. S. D., Klimczuk, T., & Xie, W.
(2019). New Tetragonal ReGa5(M)