Crystal-Chemical Properties of Synthetic Almandine-Pyrope Solid Solution by X-Ray Single-Crystal Diffraction and Raman Spectroscopy
Abstract
:1. Introduction
2. Experiments
2.1. Crystal Synthesis
2.2. Analysis Methods
3. Results and Discussion
3.1. Synthetic Garnet Crystal
3.2. Chemical Composition
3.3. Characteristics of Unit-Cell Parameters
3.4. Excess Mixing Volume in Solid Solutions
3.5. Characteristics of Raman Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ita, J.; Stixrude, L. Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. Solid Earth 1992, 97, 6849–6866. [Google Scholar] [CrossRef]
- Fan, D.; Li, B.; Chen, W.; Xu, J.; Kuang, Y.; Ye, Z.; Zhou, W.; Xie, H. Research Progress of the Equation of State for Garnet Minerals. Chin. J. High Press. Phys. 2018, 32, 1–13. [Google Scholar]
- Brey, G.P.; Kohler, T. Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Newton, R.C.; Perkins, D. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz1. Am. Mineral. 1982, 67, 203–222. [Google Scholar]
- Zhao, M. Introduction to Minearlogy, 2nd ed.; Geological Publishing House: Beijing, China, 2010; pp. 172–174. [Google Scholar]
- Nestola, F.; Milani, S.; Angel, R.J.; Pasqual, D.; Geiger, C.A. Pressure-volume equation of state for pyrope-almandine solid solutions. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Chopelas, A.; Savage, F. Single crystal raman spectroscopy and thermodynamics of garnet solid solutions I: Grossular-Andradite. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Sabeen, H.M.; Ramanujam, N.; Morton, A.C. The provenance of garnet: Constraints provided by studies of coastal sediments from southern India. Sediment. Geol. 2002, 152, 279–287. [Google Scholar] [CrossRef]
- Du, W.; Han, B.; Clark, S.M.; Wang, Y.; Liu, X. Raman spectroscopic study of synthetic pyrope–grossular garnets: Structural implications. Phys. Chem. Miner. 2018, 45, 197–209. [Google Scholar] [CrossRef]
- Savage, F.B.; Chopelas, A. Single Crystal Raman Spectroscopy and Thermodynamics of Garnet Solid Solutions II: Pyrope-Almandine Binary. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 8–12 December 2003. [Google Scholar]
- Milani, S.; Nestola, F.; Alvaro, M.; Pasqual, D.; Mazzucchelli, M.L.; Domeneghetti, M.C.; Geiger, C.A. Diamond–garnet geobarometry: The role of garnet compressibility and expansivity. Lithos 2015, 227, 140–147. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, D.; Fan, D.; Zhang, J.S.; Hu, Y.; Guo, X.; Dera, P.; Zhou, W. Phase Transitions in Orthoenstatite and Subduction Zone Dynamics: Effects of Water and Transition Metal Ions. J. Geophys. Res. Solid Earth 2018, 123, 2723–2737. [Google Scholar] [CrossRef]
- Fan, D.; Chang, L.; Xu, J.; Yan, B.; Yang, B.; Chen, J. Effects of water on P-V-T equation of state of pyrope. Phys. Earth Planet. Inter. 2017, 267, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Dera, P.K.; Eng, P.J.; Stubbs, J.E.; Zhang, J.S.; Prakapenka, V.B.; Rivers, M.L. High Pressure Single Crystal Diffraction at PX^2. J. Vis. Exp. 2017, 119, e54660. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2010, 42, 339–341. [Google Scholar] [CrossRef]
- Cherepanova, T.A.; Bennema, P.; Yanson, Y.A.; Vogels, L.J.P.; Cherepanova, T.A.; Bennema, P.; Yanson, Y.A.; Vogels, L.J.P. Morphology of synthetic and natural garnets: Theory and observations. J. Cryst. Growth 1992, 121, 17–32. [Google Scholar] [CrossRef]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef]
- Shu, H.; Chen, J. Equation of state of pyrope–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys. Earth Planet. Inter. 2014, 228, 88–91. [Google Scholar]
- Takahashi, T.; Liu, L.G. Compression of Ferromagnesian Garnets and the Effect of solid solutions on the Bulk Modulus. J. Geophys. Res. 1970, 75, 5757–5766. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Geiger, C.A.; Newton, R.C.; Kleppa, O.J. Enthalpy of mixing of synthetic almandine-grossular and almandine-pyrope garnets from high-temperature solution calorimetry. Geochimica Et Cosmochimica Acta 1987, 51, 1755–1763. [Google Scholar] [CrossRef]
- Geiger, C.A.; Feenstra, A. Molar volumes of mixing of almandine-pyrope and almandine-spessartine garnets and the crystal chemistry and thermodynamic-mixing properties of the aluminosilicate garnets. Am. Mineral. 1997, 82, 571–581. [Google Scholar] [CrossRef]
- Antao, S.; Zaman, M.; Suarez Nieto, N.; Gontijo, V.; Marr, R. Structural variations in pyrope-almandine solid solutions. Adv. X-Ray Anal. 2014, 58, 90–107. [Google Scholar]
- Du, W.; Clark, S.M.; Walker, D. Excess mixing volume, microstrain, and stability of pyrope-grossular garnets. Am. Mineral. 2016, 101, 193–204. [Google Scholar] [CrossRef]
- Koningstein, J.A.; Mortensen, O.S. Electronic Raman Spectra. III. Absolute Cross Sections for Electronic Raman and Rayleigh Scattering. Phys. Rev. 1968, 168, 75–77. [Google Scholar] [CrossRef]
- Moore, R.K.; White, W.B.; Long, T.V. Vibrational spectra of the common silicates: I. The garnets. Am. Mineral. 1971, 56, 54–71. [Google Scholar]
- Fateley, W.G.; Mcdevitt, N.T.; Bentley, F.F. Infrared and Raman Selection Rules for Lattice Vibrations: The Correlation Method. Appl. Spectrosc. 1971, 25, 155–173. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A. Raman spectra of silicate garnets. Phys. Chem. Miner. 1998, 25, 142–151. [Google Scholar] [CrossRef]
- Sibi, N.; Subodh, G. Structural and Microstructural Correlations of Physical Properties in Natural Almandine-Pyrope Solid Solution: Al70Py29. J. Electron. Mater. 2017, 46, 1–10. [Google Scholar] [CrossRef]
- Mingsheng, P.; Mao, H.K.; Dien, L.; Chao, E.C.T. Raman spectroscopy of garnet-group minerals. Chin. J. Geochem. 1994, 13, 176–183. [Google Scholar] [CrossRef]
- Ganetsos, T.; Katsaros, T.; Vandenabeele, P.; Greiff, S.; Hartmann, S. Raman spectroscopy as a tool for garnet analysis and investigation on samples from different sources. Int. J. Mater. Chem. 2013, 3, 5–9. [Google Scholar]
Nominal Compositions | Alm100 | Pyr10Alm90 | Pyr20Alm80 | Pyr30Alm70 | Pyr40Alm60 | Pyr50Alm50 | Pyr60Alm40 | Pyr70Alm30 | Pyr80Alm20 | Pyr90Alm10 | Pyr100 |
---|---|---|---|---|---|---|---|---|---|---|---|
EMPA Compositions | Alm100 | Pyr9Alm91 | Pyr14Alm86 | Pyr23Alm76 | Pyr31Alm68 | Pyr48Alm52 | Pyr57Alm43 | Pyr67Alm32 | Pyr78Alm22 | Pyr87Alm12 | Pyr100 |
wt.% of oxides | |||||||||||
SiO2 | 35.76 (27) | 36.83 (102) | 36.37 (175) | 36.26 (177) | 38.33 (26) | 38.88 (174) | 40.11 (57) | 41.21 (28) | 42.68 (59) | 43.28 (33) | 43.34 (101) |
TiO2 | 1.58 (147) | 0.90 (75) | 1.20 (112) | 0.87 (67) | 1.34 (4) | 0.05 (5) | 0.18 (22) | 0.55 (55) | 0.01 (1) | 0.20 (4) | 0.11 (12) |
Al2O3 | 19.81 (53) | 20.10 (44) | 20.25 (123) | 19.96 (31) | 21.15 (28) | 21.57 (275) | 22.23 (16) | 22.72 (16) | 22.20 (167) | 24.13 (24) | 24.36 (52) |
FeO | 46.04 (72) | 43.09 (15) | 40.32 (95) | 38.33 (234) | 33.94 (38) | 23.37 (147) | 22.17 (70) | 17.13 (22) | 11.98 (37) | 6.83 (200) | 0.05 (5) |
MnO | 0.01 (2) | 0.01 (1) | 0.01 (3) | 0.01 (1) | 0.02 (2) | 0.01 (2) | 0.02 (1) | 0.01 (1) | 0.01 (2) | 0.00 | 0.01 (1) |
MgO | 0.01 (1) | 2.30 (21) | 3.56 (94) | 6.59 (158) | 8.74 (22) | 12.11 (74) | 16.65 (69) | 19.95 (48) | 23.68 (72) | 26.91 (162) | 30.66 (37) |
CaO | 0.02 (2) | 0.03 (1) | 0.05 (3) | 0.07 (4) | 0.10 (3) | 0.07 (10) | 0.09 (6) | 0.14 (2) | 0.15 (11) | 0.11 (9) | 0.01 (1) |
Total | 103.23 (20) | 103.26 (124) | 101.76 (440) | 102.08 (12) | 103.62 (57) | 96.10 (328) | 101.44 (80) | 101.72 (63) | 100.72 (77) | 101.46 (64) | 98.54 (191) |
mol.% of garnets | |||||||||||
Pyrope | 0.05 (4) | 8.68 (69) | 13.56 (334) | 23.41 (545) | 31.37 (76) | 47.83 (260) | 57.09 (187) | 67.25 (42) | 77.59 (108) | 87.30 (406) | 99.88 (11) |
Spessartine | 0.03 (2) | 0.03 (3) | 0.03 (6) | 0.01 (1) | 0.04 (4) | 0.03 (5) | 0.03 (3) | 0.02 (1) | 0.03 (3) | 0.00 | 0.01 (3) |
Grossular | 0.04 (4) | 0.08 (3) | 0.13 (8) | 0.18 (11) | 0.26 (6) | 0.20 (28) | 0.23 (14) | 0.34 (4) | 0.36 (27) | 0.26 (21) | 0.02 (3) |
Almandine | 99.88 (8) | 91.20 (69) | 86.28 (333) | 76.40 (532) | 68.33 (83) | 51.86 (286) | 42.65 (172) | 32.39 (45) | 22.02 (104) | 12.45 (384) | 0.08 (9) |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00.00 | 100.00.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Chemical formula | Fe3.13Al1.90Ti0.1Si2.91O12 | (Fe2.88Mg0.27) Al1.89Ti0.05Si2.94O12 | (Fe2.71Mg0.43) Al1.92Ti0.07Si2.92O12 | (Fe2.55Mg0.78) Al1.87Ca0.01 Ti0.05Si2.88O12 | (Fe2.16Mg0.99) Al1.9Ca0.01Ti0.08Si2.92O12 | (Fe1.52Mg1.41) Al1.99Ca0.01Si3.04O12 | (Fe1.36Mg1.82) Al1.93Ca0.01 Ti0.01Si2.95O12 | (Fe1.03Mg2.13) Al1.92Ca0.01Ti0.03Si2.95O12 | (Fe0.71Mg2.49) Al1.85Ca0.01 Si3.01O12 | (Fe0.39Mg2.74) Al1.95Ca0.01Ti0.01Si2.96O12 | Mg3.12Al1.96 Ti0.01Si2.96O12 |
Atom occupancy composition | Alm100 | Pyr11Alm90 | Pyr16Alm84 | Pyr28Alm73 | Pyr41Alm60 | Pyr45Alm55 | Pyr52Alm48 | Pyr67Alm33 | Pyr75Alm24 | Pyr100 |
Composition | Pry% | a (Å) | V (Å3) | Reference |
---|---|---|---|---|
Alm100 | 0 | 11.5320 (5) | 1533.52 | Takahashi et al. 1970 [20] |
Alm100 | 0 | 11.5330 (5) | 1533.61 | Takahashi et al. 1970 [20] |
Alm100 | 0 | 11.5303 (1) | 1532.91 (4) | This study |
Alm100 | 0 | 11.530 | 1533.52 (10) | Milani et al. 2015 [11] |
Alm100 | 0 | 11.5291 (3) | 1532.45 | Geiger et al. 1997 [23] |
Pyr7Alm93 | 7 | 11.5227 (2) | 1529.90 | Geiger et al. 1997 [23] |
Pyr9Alm91 | 9 | 11.5270 (1) | 1531.62 (4) | This study |
Pyr14Alm86 | 14 | 11.5241 (3) | 1530.46 (12) | This study |
Pyr15Alm85 | 15 | 11.51570 (2) | 1527.63 | Geiger et al. 1997 [23] |
Pyr22Alm72 | 22 | 11.5230 (5) | 1530.02 | Takahashi et al. 1970 [20] |
Pyr23Alm76 | 23 | 11.5276 (2) | 1531.85 (6) | This study |
Pyr25Alm75 | 25 | 11.5105 (2) | 1525.045 | Geiger et al. 1997 [23] |
Pyr30Alm70 | 30 | 11.5121 (3) | 1526 (1) | Huang et al. 2014 [19] |
Pyr31Alm68 | 31 | 11.5105 (1) | 1525.06 (2) | This study |
Pyr40Alm60 | 40 | 11.4995 (2) | 1520.677 | Geiger et al. 1997 [23] |
Pyr48Alm52 | 48 | 11.5096 (1) | 1524.67 (2) | This study |
Pyr50Alm50 | 50 | 11.4925 (3) | 1517.90 | Geiger et al. 1997 [23] |
Pyr54Alm46 | 54 | 11.4859 (1) | 1515 (2) | Huang et al. 2014 [19] |
Pyr57Alm43 | 57 | 11.5013 (4) | 1521.39 (16) | This study |
Pyr60Alm40 | 60 | 11.488 | 1516.32 (13) | Milani et al. 2015 [11] |
Pyr60Alm31 | 60 | 11.521 (1) | 1529.22 | Takahashi et al. 1970 [20] |
Pyr62Alm38 | 62 | 11.4830 (2) | 1514.14 | Geiger et al. 1997 [23] |
Pyr67Alm32 | 67 | 11.4887 (3) | 1516.40 (12) | This study |
Pyr75Alm25 | 75 | 11.4737 (2) | 1510.46 | Geiger et al. 1997 [23] |
Pyr78Alm22 | 78 | 11.4802 (1) | 1513.04 (3) | This study |
Pyr83Alm17 | 83 | 11.4650 (3) | 1511 (1) | Huang et al. 2014 [19] |
Pyr90Alm10 | 90 | 11.4612 (2) | 1505.53 | Geiger et al. 1997 [23] |
Pyr100 | 100 | 11.4552 (1) | 1503.18 (4) | This study |
Pyr100 | 100 | 11.4555 (3) | 1503.29 | Geiger et al. 1997 [23] |
Pyr100 | 100 | 11.4540 (5) | 1502.70 | Takahashi et al. 1970 [20] |
Pyr100 | 100 | 11.463 | 1506.15 (16) | Milani et al. 2015 [11] |
Bond Distances | Alm100 | Pyr9Alm91 | Pyr14Alm86 | Pyr23Alm76 | Pyr31Alm69 | Pyr48Alm52 | Pyr57Alm43 | Pyr67Alm32 | Pyr78Alm22 | Pyr100 |
---|---|---|---|---|---|---|---|---|---|---|
M-O bond I length | 2.2241 (9) | 2.2218 (10) | 2.2193 (12) | 2.2203 (9) | 2.2159 (9) | 2.2153 (6) | 2.2140 (9) | 2.2088 (8) | 2.2057 (7) | 2.1993 (8) |
M-O bond I length | 2.3701 (10) | 2.3704 (10) | 2.3680 (12) | 2.3662 (9) | 2.3606 (9) | 2.3598 (7) | 2.3599 (9) | 2.3532 (8) | 2.3501 (7) | 2.3400 (7) |
Average <M-O> | 2.2971 (10) | 2.2962 (10) | 2.2936 (12) | 2.2933 (9) | 2.2882 (9) | 2.2876 (7) | 2.2853 (9) | 2.2810 (8) | 2.2779 (7) | 2.2779 (7) |
[FeO8]/[MgO8] volume | 20.836 | 20.82 | 20.754 | 20.736 | 20.599 | 20.582 | 20.514 | 20.408 | 20.327 | 20.101 |
<Al-O> | 1.8918 (10) | 1.8907 (11) | 1.8931 (13) | 1.8954 (10) | 1.8925 (10) | 1.8913 (7) | 1.8912 (10) | 1.8901 (8) | 1.8903 (7) | 1.8860 (8) |
[AlO6] volume | 9.021 | 9.004 | 9.038 | 9.07 | 9.027 | 9.01 | 9.007 | 8.99 | 8.991 | 8.926 |
<Si-O> | 1.6360 (10) | 1.6360 (10) | 1.6353 (13) | 1.6360 (10) | 1.6357 (10) | 1.6370 (7) | 1.6359 (10) | 1.6349 (8) | 1.6340 (7) | 1.6350 (8) |
[SiO4] volume | 2.206 | 2.205 | 2.201 | 2.204 | 2.202 | 2.207 | 2.202 | 2.197 | 2.192 | 2.195 |
a <D-O> | 2.029 | 2.02977 | 2.0289 | 2.0295 | 2.02615 | 2.02588 | 2.02442 | 2.02175 | 2.02003 | 2.0151 |
a (Å) | 11.53025 (9) | 11.52701 (11) | 11.5241 (3) | 11.52759 (16) | 11.51055 (6) | 11.50955 (6) | 11.5013 (4) | 11.4887 (3) | 11.48023 (8) | 11.45522 (10) |
Alm12Pyr87 | Alm22Pyr78 | Alm32Pyr67 | Alm43Pyr57 | Alm52Pyr48 | Alm68Pyr31 | Alm76Pyr23 | Alm86Pyr14 | Alm91Pyr9 | Assignment | Symmetry Species | Site Motion |
---|---|---|---|---|---|---|---|---|---|---|---|
1060 | 1057 | 1056 | 1045 | 1044 | 1041 | 1044 | 1035 | 1037 | (Si-O)str | F2g | v1 and v3 |
924 | 924 | 923 | 920 | 920 | 919 | 918 | 916 | 916 | (Si-O)str | A1g | |
867 | 867 | 867 | 866 | 865 | 865 | 864 | (Si-O)str | F2g | |||
759 b | F2g | ||||||||||
688 a | (Si-O)bend | F2g | v2 and v4 | ||||||||
644 | 644 | 642 | 638 | 637 | 635 | 634 | 633 | 630 | (Si-O)bend | F2g | |
587 | 586 | 584 | 581 | (Si-O)bend | Eg | ||||||
560 | 560 | 559 | 558 | 557 | 556 | 555 | 555 | 556 | (Si-O)bend | A1g | |
507 | 508 | 506 | 503 | 503 | 501 | 500 | 499 | 500 | (Si-O)bend | F2g | |
486 | 482 | 481 | 481 | 478 | 478 | 475 | (Si-O)bend | F2g | |||
375 | 375 | 374 | 370 | 372 | 372 | 367 | 370 | 365 | R(SiO4) | F2g | Rotation of SiO4 |
358 | 358 | 356 | 350 | 351 | 349 | 347 | 344 | 342 | R(SiO4) | A1g | |
350 | 351 | 353 | 333 | 332 | 323 | 329 | R(SiO4) | F2g | |||
318 | 318 | 318 | 317 | 315 | 314 | 314 | 316 | R(SiO4) | F2g | ||
209 | 209 | 210 | 210 | 209 | 211 | 211 | 214 | 213 | T(SiO4) | Eg | Translation of SiO4 |
167 | 168 | 168 | T(X2+) | F2g | Translation of X cation |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, Y.; Xu, J.; Li, B.; Ye, Z.; Huang, S.; Chen, W.; Zhang, D.; Zhou, W.; Ma, M. Crystal-Chemical Properties of Synthetic Almandine-Pyrope Solid Solution by X-Ray Single-Crystal Diffraction and Raman Spectroscopy. Crystals 2019, 9, 541. https://doi.org/10.3390/cryst9100541
Kuang Y, Xu J, Li B, Ye Z, Huang S, Chen W, Zhang D, Zhou W, Ma M. Crystal-Chemical Properties of Synthetic Almandine-Pyrope Solid Solution by X-Ray Single-Crystal Diffraction and Raman Spectroscopy. Crystals. 2019; 9(10):541. https://doi.org/10.3390/cryst9100541
Chicago/Turabian StyleKuang, Yunqian, Jingui Xu, Bo Li, Zhilin Ye, Shijie Huang, Wei Chen, Dongzhou Zhang, Wenge Zhou, and Maining Ma. 2019. "Crystal-Chemical Properties of Synthetic Almandine-Pyrope Solid Solution by X-Ray Single-Crystal Diffraction and Raman Spectroscopy" Crystals 9, no. 10: 541. https://doi.org/10.3390/cryst9100541
APA StyleKuang, Y., Xu, J., Li, B., Ye, Z., Huang, S., Chen, W., Zhang, D., Zhou, W., & Ma, M. (2019). Crystal-Chemical Properties of Synthetic Almandine-Pyrope Solid Solution by X-Ray Single-Crystal Diffraction and Raman Spectroscopy. Crystals, 9(10), 541. https://doi.org/10.3390/cryst9100541