Fabrication of Pyramid Structure Substrate Utilized for Epitaxial Growth Free-Standing GaN
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Iwasa, N.; Nagahama, S. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. 1995, 34, L797–L799. [Google Scholar] [CrossRef]
- Akasaki, I.; Sota, S.; Sakai, H.; Tanaka, T.; Koike, M.; Amano, H. Shortest wavelength semiconductor laser diode. Electron. Lett. 1996, 32, 1105–1106. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.I.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices. Jpn. J. Appl. Phys. 1997, 36, L1568–L1571. [Google Scholar] [CrossRef]
- Asif Khan, M.; Kuznia, J.N.; Olson, D.T.; Schaff, W.J.; Burm, J.W.; Shur, M.S. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 1994, 65, 1121–1123. [Google Scholar] [CrossRef]
- Sandvik, P.; Mi, K.; Shahedipour, F.; McClintock, R.; Yasan, A.; Kung, P.; Razeghi, M. AlxGa1−x N for solar-blind UV detectors. J. Cryst. Growth 2001, 231, 366–370. [Google Scholar] [CrossRef]
- Kapolnek, D.; Wu, X.H.; Heying, B.; Keller, S.; Keller, B.P.; Mishra, U.K.; DenBaars, S.P.; Speck, J.S. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl. Phys. Lett. 1995, 67, 1541–1543. [Google Scholar] [CrossRef]
- Qian, W.; Skowronski, M.; De Graef, M.; Doverspike, K.; Rowland, L.B.; Gaskill, D.K. Microstructural characterization of α-GaN films grown on sapphire by organometallic vapor phase epitaxy. Appl. Phys. Lett. 1995, 66, 1252–1254. [Google Scholar] [CrossRef]
- Amano, H. Progress and prospect of the growth of wide-band-gap group III nitrides: development of the growth method for single-crystal bulk GaN. Jpn. J. Appl. Phys. 2013, 52, 050001. [Google Scholar] [CrossRef]
- Zhang, L; Li, X.; Shao, Y.L.; Yu, J.X.; Wu, Y.Z.; Hao, X.P.; Yin, Z.M.; Dai, Y.B.; Tian, Y.; Huo, Q.; et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. Appl. Mater. Interfaces 2015, 7, 4504–4510. [Google Scholar] [CrossRef]
- Lin, C.; Yu, G.; Wang, X.; Cao, M.; Lu, H.; Gong, H.; Qi, M.; Li, A. Hydride vapor phase epitaxy growth of high-quality GaN film on in situ etched GaN template. Mater. Lett. 2009, 63, 943–945. [Google Scholar] [CrossRef]
- Weyher, J.L.; Ashraf, H.; Hageman, P.R. Reduction of dislocation density in epitaxial GaN layers by overgrowth of defect-related etch pits. Appl. Phys. Lett. 2009, 95, 031913. [Google Scholar] [CrossRef]
- Kelly, M.K.; Ambacher, O.; Dimitrov, R.; Handschuh, R.; Stutzmann, M. Optical Process for Liftoff of Group III-Nitride Films. Phys. Status Solidi A 1997, 159, R3–R4. [Google Scholar] [CrossRef]
- Oshima, Y.; Shibata, T.; Eri, M.; Sunakawa, H.; Usui, A. Fabrication of freestanding GaN wafers by Hydride Vapor-Phase Epitaxy with void-assisted separation. Phys. Status Solidi A 2002, 194, 554–558. [Google Scholar] [CrossRef]
- Williams, A.D.; Moustakas, T.D. Formation of large-area freestanding gallium nitride substrates by natural stress-induced separation of GaN and sapphire. J. Cryst. Growth 2007, 300, 37–41. [Google Scholar] [CrossRef]
- Hennig, Ch.; Richter, E.; Weyers, M.; Tränkle, G. Freestanding 2-in GaN layers using lateral overgrowth with HVPE. J. Cryst. Growth 2008, 310, 911–915. [Google Scholar] [CrossRef]
- Chao, C.L.; Chiu, C.H.; Lee, Y.J.; Kuo, H.C.; Liu, P.C.; Tsay, J.D.; Cheng, S.J. Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy. Appl. Phys. Lett. 2009, 95, 051905. [Google Scholar] [CrossRef]
- Liu, N.L.; Cheng, Y.T.; Wu, J.J.; Li, X.B.; Yu, T.B.; Xiong, H.; Li, W.H.; Chen, J.; Zhang, G.Y. HVPE homoepitaxial growth of high quality bulk GaN using acid wet etching method and its mechanism analysis. J. Cryst. Growth 2016, 454, 59–63. [Google Scholar] [CrossRef]
- Bockowski, M.; Iwinska, M.; Amilusik, M.; Fijalkowski, M.; Lucznik, B.; Sochacki, T. Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semicond. Sci. Technol. 2016, 31, 093002. [Google Scholar] [CrossRef]
- Hiramatsu, K. Epitaxial lateral overgrowth techniques used in group III nitride epitaxy. J. Phys. Condens. Matter 2001, 13, 6961–6975. [Google Scholar] [CrossRef]
- Ng, H.M.; Weimann, N.G.; Chowdhury, A. GaN nanotip pyramids formed by anisotropic etching. J. Appl. Phys. 2003, 94, 650. [Google Scholar] [CrossRef]
- Qi, S.L.; Chen, Z.Z.; Fang, H.; Sun, Y.J.; Sang, L.W.; Yang, X.L.; Zhao, L.B.; Tian, P.F.; Deng, J.J.; Tao, Y.B.; et al. Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4. Appl. Phys. Lett. 2009, 95, 071114. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Z.; Qi, S.L.; Wang, S.; Jiang, S.; Fu, X.; Jiang, X.; Yu, T.; Qin, Z.; Kang, X.; et al. Changing oblique angles of pyramid facets fabricated by wet etching of N polar GaN. CrystEngComm 2012, 14, 4781–4785. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, L.; Shen, J.; Xiu, Z.; Liu, S. Wafer-scale porous GaN single crystal substrates and its application in energy storage. CrystEngComm 2016, 18, 18–5154. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Y.L.; Wu, Y.Z.; Hao, X.P.; Chen, X.F.; Qu, S.; Xu, X.G. Characterization of dislocation etch pits in HVPE-grown GaN using different wet chemical etching methods. J. Alloys Compd. 2010, 504, 186–191. [Google Scholar] [CrossRef]
- Kisielowski, C.; Krüger, J.; Ruvimov, S.; Suski, T.; Ager, J.W.; Jones, E.; Liliental-Weber, Z.; Rubin, M.; Weber, E.R.; Bremser, M.D.; et al. Strain-related phenomena in GaN thin films. Phys. Rev. B 1996, 54, 17745. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Zhang, B.; Zhang, L.; Wu, Y.; Hu, H.; Liu, L.; Shao, Y.; Hao, X. Fabrication of Pyramid Structure Substrate Utilized for Epitaxial Growth Free-Standing GaN. Crystals 2019, 9, 547. https://doi.org/10.3390/cryst9110547
Yu R, Zhang B, Zhang L, Wu Y, Hu H, Liu L, Shao Y, Hao X. Fabrication of Pyramid Structure Substrate Utilized for Epitaxial Growth Free-Standing GaN. Crystals. 2019; 9(11):547. https://doi.org/10.3390/cryst9110547
Chicago/Turabian StyleYu, Ruixian, Baoguo Zhang, Lei Zhang, Yongzhong Wu, Haixiao Hu, Lei Liu, Yongliang Shao, and Xiaopeng Hao. 2019. "Fabrication of Pyramid Structure Substrate Utilized for Epitaxial Growth Free-Standing GaN" Crystals 9, no. 11: 547. https://doi.org/10.3390/cryst9110547
APA StyleYu, R., Zhang, B., Zhang, L., Wu, Y., Hu, H., Liu, L., Shao, Y., & Hao, X. (2019). Fabrication of Pyramid Structure Substrate Utilized for Epitaxial Growth Free-Standing GaN. Crystals, 9(11), 547. https://doi.org/10.3390/cryst9110547