Review of Size Effects during Micropillar Compression Test: Experiments and Atomistic Simulations
Abstract
:1. Introduction
2. Experimental Observations
3. Size Effects Models
3.1. Dislocation Source Truncation Mechanism
3.2. Dislocation Source Exhaustion Mechanism
3.3. Weakest Link Theory
4. Atomistic Simulation of Micropillar Compression Tests
5. Conclusions
- The size effects in crystalline metals can be successfully captured using the following power law equation:
- In the case of FCC metals, the value of is obtained for the data available in the literature.
- In the case of BCC metals, the value of varies for different materials. Many factors including the residual Peierls barrier, temperature, and applied strain rate may influence the size effects in BCC pillars. For example, a higher residual Peierls stress leads to a lower power law exponent.
- In the case of HCP metals, the observed size effects depend on the activated deformation mechanism, which can be basal, prismatic, and pyramidal slip systems or twinning. For example, in the case of basal slip mode, the slope is close to FCC metals, i.e., ; however, for the prismatic slip mode, the power law exponent is about 0.44.
- Three mechanisms of source truncation, source exhaustion hardening, and weakest link theory are introduced to describe the observed size effects during micropillar compression tests.
- For very small samples, dislocation starvation becomes the dominant mechanism of size effect, in a way that all of the dislocations leave the sample, which leads to an elastic response until another set of dislocations are generated from the pillar surface.
- Increasing the sample length, all of the dislocations cannot escape from the sample surface and no more starvation is observed. However, general source exhaustion mechanism can still be observed in a way that, although the dislocation starvation does not occur, the dislocations are still escaping from the sample surface. If the remaining dislocation density cannot sustain the applied plastic flow, the stress should be increased, which leads to the observed size effects.
- The results show that, due to the high strain rate of atomistic simulation, the critical pillar diameter at which there is no more size effects for pillars with a larger diameter is smaller than that of the quasi-static experiment. Accordingly, the results show that higher strain rate leads to less size effects.
- The coupling effects of pillar diameter and applied strain rate are presented. The results show that, as the strain rate increases, less size effects will be observed. This can be explained using the dislocation length distribution in a way that, as the strain rate increases, the size of the maximum dislocation length decreases, irrespective of the sample size. Accordingly, the responses of the samples with different diameters will converge, and there will be no more size effects. Ultimately, in the case of quasi-static experiments with very low strain rate, the size of maximum dislocation length can be scaled by the diameter of the pillar, while, at very high strain rates, the maximum dislocation length will be almost independent of the pillar size.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
The measured yield or flow stress | |
Strain | |
Strain rate | |
Pillar diameter | |
Power law exponent | |
FCC | Face Centered Cubic |
BCC | Body Centered Cubic |
HCP | Hexagonal close packed |
Critical resolved shear stress | |
Shear modulus | |
Burgers vector | |
Number of pins inside a pillar | |
The maximum distance of a pin from the free surface | |
Pillar radius | |
Major axis of the elliptical glide plane | |
Angle between the primary slip plane and the loading axis | |
Mean effective dislocation source length | |
Friction stress | |
Dislocation density | |
Total length of mobile dislocations | |
Average length of dislocation segments | |
Pillar height | |
Stacking fault energy | |
Dislocation loss rate | |
Density of mobile dislocations | |
Dislocation mean free path | |
Initial dislocation content | |
M | Schmid factor |
Velocity of dislocation | |
Plastic strain induced by the movement of mobile dislocations | |
Source hardening constant | |
Average dislocation source length | |
Average strength of the forest dislocations | |
Scalar density of the forest dislocations | |
Mean-field limit | |
Probability density function | |
Largest dislocation length |
References
- Voyiadjis, G.Z.; Yaghoobi, M. Chapter 1—Introduction: Size effects in materials. In Size Effects in Plasticity; Voyiadjis, G.Z., Yaghoobi, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 1–79. [Google Scholar] [CrossRef]
- Uchic, M.D.; Shade, P.A.; Dimiduk, D.M. Plasticity of micrometer-scale single crystals in compression. Ann. Rev. Mater. Res. 2009, 39, 361–386. [Google Scholar] [CrossRef]
- Greer, J.R.; De Hosson, J.T.M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 2011, 56, 654–724. [Google Scholar] [CrossRef]
- Kraft, O.; Gruber, P.A.; Mönig, R.; Weygand, D. Plasticity in confined dimensions. Ann. Rev. Mater. Res. 2010, 40, 293–317. [Google Scholar] [CrossRef]
- Rao, S.; Hashemi Astaneh, S.; Villanueva, J.; Silva, F.; Takoudis, C.; Bijukumar, D.; Souza, J.C.M.; Mathew, M.T. Physicochemical and in-vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium. J. Mech. Behav. Biomed. Mater. 2019, 96, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Hashemi Astaneh, S.; Jursich, G.; Sukotjo, C.; Takoudis, C.G. Surface and subsurface film growth of titanium dioxide on polydimethylsiloxane by atomic layer deposition. Appl. Surf. Sci. 2019, 493, 779–786. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng. A 2005, 400–401, 268–278. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Exploring specimen size effects in plastic deformation of Ni3(Al, Ta). MRS Proc. 2003, 753, BB1.4–BB1.4.6. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Review of nanoindentation size effect: Experiments and atomistic simulation. Crystals 2017, 7, 321. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Cui, Y.; Ghoniem, N. Avalanches and plastic flow in crystal plasticity: An overview. Model. Simul. Mater. Sci. Eng. 2017, 26, 013001. [Google Scholar] [CrossRef]
- Bringa, E.M.; Rosolankova, K.; Rudd, R.E.; Remington, B.A.; Wark, J.S.; Duchaineau, M.; Kalantar, D.H.; Hawreliak, J.; Belak, J. Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat. Mater. 2006, 5, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Gall, K.; Dunn, M.L.; Zimmerman, J.A. Atomistic simulations of the yielding of gold nanowires. Acta Mater. 2006, 54, 643–653. [Google Scholar] [CrossRef]
- Sansoz, F. Atomistic processes controlling flow stress scaling during compression of nanoscale face-centered-cubic crystals. Acta Mater. 2011, 59, 3364–3372. [Google Scholar] [CrossRef]
- Tucker, G.J.; Aitken, Z.H.; Greer, J.R.; Weinberger, C.R. The mechanical behavior and deformation of bicrystalline nanowires. Model. Simul. Mater. Sci. Eng. 2013, 21, 015004. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Size and strain rate effects in metallic samples of confined volumes: Dislocation length distribution. Scr. Mater. 2017, 130, 182–186. [Google Scholar] [CrossRef]
- Weinberger, C.R.; Cai, W. Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. USA 2008, 105, 14304–14307. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, C.R.; Jennings, A.T.; Kang, K.; Greer, J.R. Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. J. Mech. Phys. Solids 2012, 60, 84–103. [Google Scholar] [CrossRef]
- Weinberger, C.R.; Tucker, G.J. Atomistic simulations of dislocation pinning points in pure face-centered-cubic nanopillars. Model. Simul. Mater. Sci. Eng. 2012, 20, 075001. [Google Scholar] [CrossRef]
- Xu, S.; Guo, Y.F.; Ngan, A.H.W. A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars. Int. J. Plast. 2013, 43, 116–127. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Size effects in fcc crystals during the high rate compression test. Acta Mater. 2016, 121, 190–201. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Microstructural investigation of the hardening mechanism in fcc crystals during high rate deformations. Comput. Mater. Sci. 2017, 138, 10–15. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates. Acta Mater. 2018, 151, 1–10. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Chapter 5—Molecular dynamics. In Size Effects in Plasticity; Voyiadjis, G.Z., Yaghoobi, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 275–355. [Google Scholar] [CrossRef]
- Dimiduk, D.M.; Uchic, M.D.; Parthasarathy, T.A. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 2005, 53, 4065–4077. [Google Scholar] [CrossRef]
- Greer, J.R.; Oliver, W.C.; Nix, W.D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005, 53, 1821–1830. [Google Scholar] [CrossRef]
- Greer, J.R.; Nix, W.D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 2006, 73, 245410. [Google Scholar] [CrossRef] [Green Version]
- Volkert, C.A.; Lilleodden, E.T. Size effects in the deformation of sub-micron Au columns. Philos. Mag. 2006, 86, 5567–5579. [Google Scholar] [CrossRef]
- Kiener, D.; Motz, C.; Schöberl, T.; Jenko, M.; Dehm, G. Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 2006, 8, 1119–1125. [Google Scholar] [CrossRef]
- Kraft, O.; Volkert, C.A. Size Effects on Deformation and Fatigue of Thin Films and Small Structures; CAMTEC Cambridge University: Cambridge, UK, 2006. [Google Scholar]
- Frick, C.P.; Clark, B.G.; Orso, S.; Schneider, A.S.; Arzt, E. Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars. Mater. Sci Eng. A 2008, 489, 319–329. [Google Scholar] [CrossRef]
- Ng, K.S.; Ngan, A.H.W. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 2008, 56, 1712–1720. [Google Scholar] [CrossRef]
- Lee, S.-W.; Han, S.M.; Nix, W.D. Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater. 2009, 57, 4404–4415. [Google Scholar] [CrossRef]
- Jennings, A.T.; Burek, M.J.; Greer, J.R. Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 2010, 104, 135503. [Google Scholar] [CrossRef] [PubMed]
- Kiener, D.; Minor, A.M. Source-controlled yield and hardening of Cu (1 0 0) studied by in situ transmission electron microscopy. Acta Mater. 2011, 59, 1328–1337. [Google Scholar] [CrossRef]
- Jennings, A.T.; Li, J.; Greer, J.R. Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 2011, 59, 5627–5637. [Google Scholar] [CrossRef]
- Kunz, A.; Pathak, S.; Greer, J.R. Size effects in Al nanopillars: Single crystalline vs. bicrystalline. Acta Mater. 2011, 59, 4416–4424. [Google Scholar] [CrossRef]
- Gu, R.; Ngan, A.H.W. Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength. J. Mech. Phys. Solids 2013, 61, 1531–1542. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.S.; Kaufmann, D.; Clark, B.G.; Frick, C.P.; Gruber, P.A.; Mönig, R.; Kraft, O.; Arzt, E. Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 2009, 103, 105501. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jang, D.; Greer, J.R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 2010, 58, 2355–2363. [Google Scholar] [CrossRef]
- Han, S.M.; Bozorg-Grayeli, T.; Groves, J.R.; Nix, W.D. Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 2010, 63, 1153–1156. [Google Scholar] [CrossRef]
- Rogne, B.R.S.; Thaulow, C. Strengthening mechanisms of iron micropillars. Philos. Mag. 2015, 95, 1814–1828. [Google Scholar] [CrossRef]
- Huang, R.; Li, Q.-J.; Wang, Z.-J.; Huang, L.; Li, J.; Ma, E.; Shan, Z.-W. Flow stress in submicron BCC iron single crystals: Sample-size-dependent strain-rate sensitivity and rate-dependent size strengthening. Mater. Res. Lett. 2015, 3, 121–127. [Google Scholar] [CrossRef]
- Yilmaz, H. Mechanical Properties of Body-Centred Cubic Nanopillars. Ph.D. Thesis, University of Manchester, Manchester, UK, 2018. [Google Scholar]
- Sun, Q.; Guo, Q.; Yao, X.; Xiao, L.; Greer, J.R.; Sun, J. Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation. Scr. Mater. 2011, 65, 473–476. [Google Scholar] [CrossRef]
- Lilleodden, E. Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 2010, 62, 532–535. [Google Scholar] [CrossRef]
- Byer, C.M.; Li, B.; Cao, B.; Ramesh, K.T. Microcompression of single-crystal magnesium. Scr. Mater. 2010, 62, 536–539. [Google Scholar] [CrossRef]
- Ye, J.; Mishra, R.K.; Sachdev, A.K.; Minor, A.M. In situ TEM compression testing of Mg and Mg–0.2wt.% Ce single crystals. Scr. Mater. 2011, 64, 292–295. [Google Scholar] [CrossRef]
- Yu, Q.; Shan, Z.-W.; Li, J.; Huang, X.; Xiao, L.; Sun, J.; Ma, E. Strong crystal size effect on deformation twinning. Nature 2010, 463, 335–338. [Google Scholar] [CrossRef]
- Kim, G.S. Small Volume Investigation of Slip and Twinning in Magnesium Single Crystals. Ph.D. Thesis, Universite DE Grenoble, Saint-Martin-d’Hères, France, 2011. [Google Scholar]
- Sim, G.-D.; Kim, G.; Lavenstein, S.; Hamza, M.H.; Fan, H.; El-Awady, J.A. Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes. Acta Mater. 2018, 144, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, T.A.; Rao, S.I.; Dimiduk, D.M.; Uchic, M.D.; Trinkle, D.R. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 2007, 56, 313–316. [Google Scholar] [CrossRef]
- Rao, S.I.; Dimiduk, D.M.; Tang, M.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 2007, 87, 4777–4794. [Google Scholar] [CrossRef]
- Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 2008, 56, 3245–3259. [Google Scholar] [CrossRef]
- Zhou, C.; Beyerlein, I.J.; Lesar, R. Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 2011, 59, 7673–7682. [Google Scholar] [CrossRef]
- Norfleet, D.M.; Dimiduk, D.M.; Polasik, S.J.; Uchic, M.D.; Mills, M.J. Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 2008, 56, 2988–3001. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Role of grain boundary on the sources of size effects. Comput. Mater. Sci. 2016, 117, 315–329. [Google Scholar] [CrossRef] [Green Version]
- Voyiadjis, G.Z.; Yaghoobi, M. Large scale atomistic simulation of size effects during nanoindentation: Dislocation length and hardness. Mater. Sci. Eng. A 2015, 634, 20–31. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Effect of boundary conditions on the MD simulation of nanoindentation. Comput. Mater. Sci. 2014, 95, 626–636. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation. Comput. Mater. Sci. 2016, 111, 64–73. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Size Effects During Nanoindentation: Molecular Dynamics Simulation. In Handbook of Nonlocal Continuum Mechanics for Materials and Structures; Voyiadjis, G.Z., Ed.; Springer: Cham, Switzerland, 2019; pp. 39–76. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 3393–3407. [Google Scholar] [CrossRef]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Stukowski, A.; Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Henderson, A. Paraview Guide, A Parallel Visualization Application; Kitware Inc.: Clifton Park, NY, USA, 2007. [Google Scholar]
- Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C. Atomistic simulations of surface cross-slip nucleation in face-centered cubic nickel and copper. Acta Mater. 2013, 61, 2500–2508. [Google Scholar] [CrossRef]
- Hussein, A.M.; Rao, S.I.; Uchic, M.D.; Dimiduk, D.M.; El-Awady, J.A. Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater. 2015, 85, 180–190. [Google Scholar] [CrossRef]
- El-Awady, J.A.; Wen, M.; Ghoniem, N.M. The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phy. Solids 2009, 57, 32–50. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbeyk, S.; Voyiadjis, G.Z.; Habibi, V.; Astaneh, S.H.; Yaghoobi, M. Review of Size Effects during Micropillar Compression Test: Experiments and Atomistic Simulations. Crystals 2019, 9, 591. https://doi.org/10.3390/cryst9110591
Shahbeyk S, Voyiadjis GZ, Habibi V, Astaneh SH, Yaghoobi M. Review of Size Effects during Micropillar Compression Test: Experiments and Atomistic Simulations. Crystals. 2019; 9(11):591. https://doi.org/10.3390/cryst9110591
Chicago/Turabian StyleShahbeyk, Sharif, George Z. Voyiadjis, Vahid Habibi, Sarah Hashemi Astaneh, and Mohammadreza Yaghoobi. 2019. "Review of Size Effects during Micropillar Compression Test: Experiments and Atomistic Simulations" Crystals 9, no. 11: 591. https://doi.org/10.3390/cryst9110591
APA StyleShahbeyk, S., Voyiadjis, G. Z., Habibi, V., Astaneh, S. H., & Yaghoobi, M. (2019). Review of Size Effects during Micropillar Compression Test: Experiments and Atomistic Simulations. Crystals, 9(11), 591. https://doi.org/10.3390/cryst9110591