Pressure-Induced Phase Transitions in Sesquioxides
Abstract
:1. Introduction
2. High-Pressure Phase Transitions in Sesquioxides
2.1. Rare-Earth Sesquioxides
2.2. Group-13 Sesquioxides
2.3. Transition-Metal Sesquioxides
2.4. Group-15 Sesquioxides
2.5. Mixed-Valence Sesquioxides
3. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Liu, L.-G.; Bassett, W.A. Elements, Oxides, Silicates, High-Pressure Phases with Implications for the Earth’s Interior; Oxford Monographs on Geology and Geophysics; Oxford University Press: Oxford, UK, 1986; Volume 4. [Google Scholar]
- Adachi, G.-Y.; Imanaka, N. The Binary Rare Earth Oxides. Chem. Rev. 1998, 98, 1479–1514. [Google Scholar] [CrossRef] [PubMed]
- Smyth, J.R.; Jacobsen, S.D.; Hazen, R.M. Comparative Crystal Chemistry of Dense Oxide Minerals. In Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2000; Volume 41. [Google Scholar]
- Zinkevich, M. Thermodynamics of rare earth sesquioxides. Prog. Mat. Sci. 2007, 52, 597–647. [Google Scholar] [CrossRef]
- Manjón, F.J.; Errandonea, D. Pressure-induced structural phase transitions in materials science. Phys. Stat. Sol. B 2009, 246, 9–31. [Google Scholar] [CrossRef]
- Foex, M.; Traverse, J.P. Remarques sur les transformations cristallines presentees a haute temperature par les sesquioxydes de terres rares. Rev. Int. Hautes Temp. Refract. 1966, 3, 429–453. [Google Scholar]
- Hoekstra, H.R.; Gingerich, K.A. High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science 1964, 14, 1163–1164. [Google Scholar] [CrossRef]
- Sawyer, J.O.; Hyde, B.G.; Eyring, L. Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorg. Chem. 1965, 4, 426–427. [Google Scholar] [CrossRef]
- Vegas, A.; Isea, R. Distribution of the M-M Distances in the Rare Earth Oxides. Acta Cryst. B 1998, 54, 732–740. [Google Scholar] [CrossRef]
- Vegas, A. Structural Models of Inorganic Crystals; Editorial Universitat Politècnica de Valencia: Valencia, Spain, 2018. [Google Scholar]
- McClure, J.P. High Pressure Phase Transistions in the Lanthanide Sesquioxides. Ph.D. Thesis, University of Nevada, Las Vegas, NV, USA, 2009. [Google Scholar]
- Jiang, S.; Liu, J.; Lin, C.L.; Bai, L.G.; Xiao, W.S.; Zhang, Y.F.; Zhang, D.C.; Li, X.D.; Li, Y.C.; Tang, L.Y. Pressure-induced phase transition in cubic Lu2O3. J. Appl. Phys. 2010, 108, 083541. [Google Scholar] [CrossRef]
- Lin, C.-M.; Wu, K.-T.; Hung, T.-L.; Sheu, H.-S.; Tsai, M.-H.; Lee, J.-F.; Lee, J.-J. Phase transitions in Lu2O3 under high pressure. Solid State Commun. 2010, 150, 1564–1569. [Google Scholar] [CrossRef]
- Yusa, H.; Kikegawa, T. Photon Factory Activity Report #28 Part B 223; Kishimoto, S., Ed.; High Energy Accelerator Research Organization (KEK): Ibaraki, Japan, 2010. [Google Scholar]
- Meyer, C.; Sanchez, J.P.; Thomasson, J.; Itié, J.P. Mossbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition in C-type Yb2O3. Phys. Rev. B 1995, 51, 12187–12193. [Google Scholar] [CrossRef]
- Yusa, H.; Kikegawa, T.; Tsuchiya, T. Photon Factory Activity Report #27 Part B 195; Iwano, K., Ed.; High Energy Accelerator Research Organization (KEK): Ibaraki, Japan, 2009. [Google Scholar]
- Lonappan, D. High Pressure Phase Transformation Studies on Rare Earth Sesquioxides. Ph.D. Thesis, Indira Gandhi Centre for Atomic Research, Tamil Nadu, India, 2012. [Google Scholar]
- Pandey, S.D.; Samanta, K.; Singh, J.; Sharma, N.D.; Bandyopadhyay, A.K. Anharmonic behavior and structural phase transition in Yb2O3. AIP Adv. 2013, 3, 122123. [Google Scholar] [CrossRef]
- Sahu, P.C.; Lonappan, D.; Chandra Shekar, N.V. High Pressure Structural Studies on Rare-Earth Sesquioxides. J. Phys. Conf. Ser. 2012, 377, 012015. [Google Scholar] [CrossRef]
- Irshad, K.A.; Anees, P.; Sahoo, S.; Sanjay Kumar, N.R.; Srihari, V.; Kalavathi, S.; Chandra Shekar, N.V. Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. J. Appl. Phys. 2018, 124, 155901. [Google Scholar] [CrossRef]
- Yan, D.; Wu, P.; Zhang, S.P.; Liang, L.; Yang, F.; Pei, Y.L.; Chen, S. Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 2013, 114, 193502. [Google Scholar] [CrossRef]
- Ren, X.T.; Yan, X.Z.; Yu, Z.H.; Li, W.T.; Wang, L. Photoluminescence and phase transition in Er2O3 under high pressure. J. Alloy. Compd. 2017, 725, 941–945. [Google Scholar] [CrossRef]
- Lonappan, D.; Chandra Shekar, N.V.; Ravindran, T.R.; Sahu, P.C. High-pressure phase transition in Ho2O3. Mater. Chem. Phys. 2010, 120, 65–67. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Li, X.D.; Bai, L.G.; Xiao, W.S.; Zhang, Y.F.; Lin, C.L.; Li, Y.C.; Tang, L.Y. Phase transformation of Ho2O3 at high pressure. J. Appl. Phys. 2011, 110, 013526. [Google Scholar] [CrossRef]
- Pandey, S.D.; Samanta, K.; Singh, J.; Sharma, N.D.; Bandyopadhyay, A.K. Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. J. Appl. Phys. 2014, 116, 133504. [Google Scholar] [CrossRef]
- Yan, X.Z.; Ren, X.T.; He, D.W.; Chen, B.; Yang, W.G. Mechanical behaviors and phase transition of Ho2O3 nanocrystals under high pressure. J. Appl. Phys. 2014, 116, 033507. [Google Scholar] [CrossRef]
- Sharma, N.D.; Singh, J.; Dogra, S.; Varandani, D.; Poswal, H.K.; Sharma, S.M.; Bandyopadhyay, A.K. Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. J. Raman Spectrosc. 2011, 42, 438–444. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Lin, C.L.; Bai, L.G.; Zhang, Y.F.; Li, X.D.; Li, Y.C.; Tang, L.Y.; Wang, H. Structural transformations in cubic Dy2O3 at high pressures. Solid State Commun. 2013, 169, 37–41. [Google Scholar] [CrossRef]
- Chen, H.Y.; He, C.Y.; Gao, C.X.; Ma, Y.M.; Zhang, J.H.; Wang, X.J.; Gao, S.Y.; Li, D.M.; Kan, S.H.; Zou, G.T. The structural transition of Gd2O3 nanoparticles induced by high pressure. J. Phys. Condens. Matter 2007, 19, 425229. [Google Scholar] [CrossRef]
- Chen, H.Y.; He, C.Y.; Gao, C.X.; Ma, Y.M.; Zhang, J.H.; Gao, S.Y.; Lu, H.L.; Nie, Y.G.; Li, D.M.; Kan, S.H.; et al. Structural Transition of Gd2O3: Eu Induced by High Pressure. Chin. Phys. Lett. 2007, 24, 158–160. [Google Scholar] [CrossRef]
- Zhang, F.X.; Lang, M.; Wang, J.W.; Becker, U.; Ewing, R.C. Structural phase transitions of cubic Gd2O3 at high pressures. Phys. Rev. B 2008, 78, 064114. [Google Scholar] [CrossRef]
- Dilawar, N.; Varandani, D.; Mehrotra, S.; Poswal, H.K.; Sharma, S.M.; Bandyopadhyay, A.K. Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology 2008, 19, 115703. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.G.; Liu, J.; Li, X.D.; Jiang, S.; Xiao, W.S.; Li, Y.C.; Tang, L.Y.; Zhang, Y.F.; Zhang, D.C. Pressure-induced phase transformations in cubic Gd2O3. J. Appl. Phys. 2009, 106, 073507. [Google Scholar] [CrossRef]
- Zou, X.; Gong, C.; Liu, B.B.; Li, Q.J.; Li, Z.P.; Liu, B.; Liu, R.; Liu, J.; Chen, Z.Q.; Zou, B.; et al. X-ray diffraction of cubic Gd2O3/Er under high pressure. Phys. Stat. Sol. B 2011, 248, 1123–1127. [Google Scholar] [CrossRef]
- Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Wang, Z.P.; Ding, Z.J. High Pressure Luminescence and Raman Studies on the Phase Transition of Gd2O3:Eu3+ Nanorods. J. Nanosci. Nanotechnol. 2011, 11, 9887–9891. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Q.J.; Liu, Z.D.; Bai, X.; Song, H.W.; Yao, M.G.; Liu, B.; Liu, R.; Gong, C.; Lu, S.C.; et al. Pressure-Induced Amorphization in Gd2O3/Er3+ Nanorods. J. Phys. Chem. C 2013, 117, 8503–8508. [Google Scholar] [CrossRef]
- Chen, G.; Haire, R.G.; Peterson, J.R. Effect of pressure on cubic (C-type) Eu2O3 studied via Eu3+ luminescence. High Press. Res. 1991, 6, 371–377. [Google Scholar] [CrossRef]
- Chen, G.; Stump, N.A.; Haire, R.G.; Peterson, J.R. Study of the phase behavior of Eu2O3 under pressure via luminescence of Eu3+. J. Alloy. Compd. 1992, 181, 503–509. [Google Scholar] [CrossRef]
- Dilawar, N.; Varandani, D.; Pandey, V.P.; Kumar, M.; Shivaprasad, S.M.; Sharma, P.K.; Bandyopadhyay, A.K. Structural Transition in Nanostructured Eu2O3 Under High Pressures. J. Nanosci. Nanotechnol. 2006, 6, 105–113. [Google Scholar] [PubMed]
- Jiang, S.; Bai, L.G.; Liu, J.; Xiao, W.S.; Li, X.D.; Li, Y.C.; Tang, L.Y.; Zhang, Y.F.; Zhang, D.C.; Zheng, L.R. The Phase Transition of Eu2O3 under High Pressures. Chin. Phys. Lett. 2006, 26, 076101. [Google Scholar]
- Irshad, K.A.; Chandra Shekar, N.V.; Srihari, V.; Pandey, K.K.; Kalavathi, S. High pressure structural phase transitions in Ho: Eu2O3. J. Alloy. Compd. 2017, 725, 911–915. [Google Scholar] [CrossRef]
- Irshad, K.A.; Chandra Shekar, N.V. Anomalous lattice compressibility of hexagonal Eu2O3. Mat. Chem. Phys. 2017, 195, 88–93. [Google Scholar] [CrossRef]
- Yu, Z.H.; Wang, Q.L.; Ma, Y.Z.; Wang, L. X-ray diffraction and spectroscopy study of nano-Eu2O3 structural transformation under high pressure. J. Alloy. Compd. 2017, 701, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.X.; Zhao, Y.S.; Jiang, C.; Mao, W.L.; Wang, Z.W. Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Commun. 2008, 145, 250–254. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Lin, C.L.; Li, X.D.; Li, Y.C. High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. J. Appl. Phys. 2013, 113, 113502. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.W.; Li, Y.W.; Ma, Y.M.; Hao, J.; Chen, X.H.; Jin, Y.X.; Liu, D.; Yu, S.D.; Cui, Q.L.; et al. High-Pressure Structural Transitions of Sc2O3 by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorg. Chem. 2009, 48, 8251–8256. [Google Scholar] [CrossRef]
- Yusa, H.; Tsuchiya, T.; Sata, N.; Ohishi, Y. High-Pressure Phase Transition to the Gd2S3 Structure in Sc2O3: A New Trend in Dense Structures in Sesquioxides. Inorg. Chem. 2009, 48, 7537–7543. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Bykova, E.; Bykov, M.; Wenz, M.D.; Pakhomova, A.S.; Glazyrin, K.; Liermann, H.-P.; Dubrovinsky, L. Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. J. Appl. Phys. 2015, 118, 165901. [Google Scholar] [CrossRef]
- Husson, E.; Proust, C.; Gillet, P.; Itié, J.P. Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Mater. Res. Bull. 1999, 34, 2085–2092. [Google Scholar] [CrossRef]
- Bai, X.; Song, H.W.; Liu, B.B.; Hou, Y.Y.; Pan, G.H.; Ren, X.G. Effects of High Pressure on the Luminescence Properties of Nanocrystalline and Bulk Y2O3:Eu3+. J. Nanosci. Nanotechnol. 2008, 8, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Jovanic, B.R.; Dramicanin, M.; Viana, B.; Panic, B.; Radenkovic, B. High-pressure optical studies of Y2O3:Eu3+ nanoparticles. Radiat. Eff. Defects Solids 2008, 163, 925–931. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Y.X.; Ding, Y.; Yang, W.G.; Mao, W.L.; Sinogeikin, S.V.; Meng, Y.; Shen, G.Y.; Mao, H.-K. High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Appl. Phys. Lett. 2009, 94, 061921. [Google Scholar] [CrossRef]
- Wang, L.; Yang, W.; Ding, Y.; Ren, Y.; Xiao, S.G.; Liu, B.B.; Sinogeikin, S.V.; Meng, Y.; Gosztola, D.J.; Shen, G.Y.; et al. Size-Dependent Amorphization of Nanoscale Y2O3 at High Pressure. Phys. Rev. Lett. 2010, 105, 095701. [Google Scholar] [CrossRef] [Green Version]
- Halevy, I.; Carmon, R.; Winterrose, M.L.; Yeheskel, O.; Tiferet, E.; Ghose, S. Pressure-induced structural phase transitions in Y2O3 sesquioxide. J. Phys. Conf. Ser. 2010, 215, 012003. [Google Scholar] [CrossRef]
- Dai, R.C.; Zhang, Z.M.; Zhang, C.C.; Ding, Z.J. Photoluminescence and Raman Studies of Y2O3:Eu3+ Nanotubes Under High Pressure. J. Nanosci. Nanotechnol. 2010, 10, 7629–7633. [Google Scholar] [CrossRef]
- Dai, R.C.; Wang, Z.P.; Zhang, Z.M.; Ding, Z.J. Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. J. Rare Earth 2010, 28, 241–245. [Google Scholar] [CrossRef]
- Yusa, H.; Tsuchiya, T.; Sata, N.; Ohishi, Y. Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorg. Chem. 2010, 49, 4478–4485. [Google Scholar] [CrossRef]
- Bose, P.P.; Gupta, M.K.; Mittal, R.; Rols, S.; Achary, S.N.; Tyagi, A.K.; Chaplot, S.L. High Pressure Phase Transitions in Yttria, Y2O3. J. Phys. Conf. Ser. 2012, 377, 012036. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.M.; Renero-Lecuna, C.; Santamaría-Pérez, D.; Rodríguez, F.; Valiente, R. Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. J. Lumin. 2014, 146, 27–32. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Li, X.-D.; Li, Y.-C.; He, S.-M.; Zhang, J.-C. High-Pressure Phase Transitions of Cubic Y2O3 under High Pressures by In-situ Synchrotron X-Ray Diffraction. Chin. Phys. Lett. 2019, 36, 046103. [Google Scholar] [CrossRef]
- Ibáñez, J.; Sans, J.A.; Cuenca-Gotor, V.; Oliva, R.; Blázquez, O.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.; Rodríguez-Mendoza, U.R.; Velázquez, M.; et al. Experimental and theoretical study of Tb2O3 under compression. Manuscript in preparation for 2020.
- Zhang, Q.; Wu, X.; Qin, S. Pressure-induced phase transition of B-type Y2O3. Chin. Phys. B 2017, 26, 090703. [Google Scholar] [CrossRef]
- Chen, G.; Peterson, J.R.; Brister, K.E. An Energy-Dispersive X-Ray Diffraction Study of Monoclinic Eu2O3 under Pressure. J. Solid State Chem. 1994, 111, 437–439. [Google Scholar] [CrossRef]
- Atou, T.; Kusaba, K.; Tsuchida, Y.; Utsumi, W.; Yagi, T.; Syono, Y. Reversible B-type- A-type transition of Sm2O3 under high pressure. Mater. Res. Bull. 1989, 24, 1171–1176. [Google Scholar] [CrossRef]
- Hongo, T.; Kondo, K.; Nakamura, K.G.; Atou, T. High pressure Raman spectroscopic study of structural phase transition in samarium oxide. J. Mater. Sci. 2007, 42, 2582–2585. [Google Scholar] [CrossRef]
- Guo, Q.X.; Zhao, Y.S.; Jiang, C.; Mao, W.L.; Wang, Z.W.; Zhang, J.Z.; Wang, Y.J. Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorg. Chem. 2007, 46, 6164–6169. [Google Scholar] [CrossRef]
- Pandey, K.K.; Garg, N.; Mishra, A.K.; Sharma, S.M. High pressure phase transition in Nd2O3. J. Phys. Conf. Ser. 2012, 377, 012006. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Bai, L.G.; Li, X.D.; Li, Y.C.; He, S.M.; Yan, S.; Liang, D.X. Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy. AIP Adv. 2018, 8, 025019. [Google Scholar] [CrossRef]
- Lipp, M.J.; Jeffries, J.R.; Cynn, H.; Park Klepeis, J.H.; Evans, W.J.; Mortensen, D.R.; Seidler, G.T.; Xiao, Y.; Chow, P. Comparison of the high-pressure behavior of the cerium oxides Ce2O3 and CeO2. Phys. Rev. B 2016, 93, 064106. [Google Scholar] [CrossRef] [Green Version]
- Hirosaki, N.; Ogata, S.; Kocer, C. Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. J. Alloy. Compd. 2003, 351, 31–34. [Google Scholar] [CrossRef]
- Marsella, L.; Fiorentini, V. Structure and stability of rare-earth and transition-metal oxides. Phys. Rev. B 2004, 69, 172103. [Google Scholar] [CrossRef]
- Petit, L.; Svane, A.; Szotec, Z.; Temmerman, W.M. First-principles study of rare-earth oxides. Phys. Rev. B 2005, 72, 205118. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zinkevich, M.; Chong, W.A.N.G.; Aldinger, F. Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Met. 2006, 25, 549–555. [Google Scholar] [CrossRef]
- Singh, N.; Saini, S.M.; Nautiyal, T.; Auluck, S. Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr, and Nd). J. Appl. Phys. 2006, 100, 083525. [Google Scholar] [CrossRef]
- Mikami, M.; Nakamura, S. Electronic structure of rare-earth sesquioxides and oxysulfides. J. Alloy. Compd. 2006, 408–412, 687–692. [Google Scholar] [CrossRef]
- Wu, B.; Zinkevich, M.; Aldinger, F.; Wen, D.Z.; Chen, L. Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln = La–Lu, Y, and Sc) based on density function theory. J. Solid State Chem. 2007, 180, 3280–3287. [Google Scholar] [CrossRef]
- Rahm, M.; Skorodumova, N.V. Phase stability of the rare-earth sesquioxides under pressure. Phys. Rev. B 2009, 80, 104105. [Google Scholar] [CrossRef]
- Jiang, H.; Gomez-Abal, R.I.; Rinke, P.; Scheffler, M. Localized and Itinerant States in Lanthanide Oxides United by GW@LDA+U. Phys. Rev. Lett. 2009, 102, 126403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillen, R.; Clark, S.J.; Robertson, J. Nature of the electronic band gap in lanthanide oxides. Phys. Rev. B 2013, 87, 125116. [Google Scholar] [CrossRef] [Green Version]
- Richard, D.; Muñoz, E.L.; Rentería, M.; Errico, L.A.; Svane, A.; Christensen, N.E. Ab initio LSDA and LSDA+U study of pure and Cd-doped cubic lanthanide sesquioxides. Phys. Rev. B 2013, 88, 165206. [Google Scholar] [CrossRef] [Green Version]
- Richard, D.; Errico, L.A.; Rentería, M. Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT+U calculations. J. Alloy. Compd. 2016, 664, 580–589. [Google Scholar] [CrossRef]
- Ogawa, T.; Otani, N.; Yokoi, T.; Fisher, C.A.J.; Kuwabara, A.; Moriwake, H.; Yoshiya, M.; Kitaoka, S.; Takata, M. Density functional study of phase stabilities and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Phys. Chem. Chem. Phys. 2018, 20, 16518–16527. [Google Scholar] [CrossRef]
- Pathak, A.K.; Vazhappily, T. Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. Phys. Stat. Sol. B 2018, 255, 1700668. [Google Scholar] [CrossRef]
- Catlow, C.R.A.; Guo, Z.X.; Miskufova, M.; Shevlin, S.A.; Smith, A.G.H.; Sokol, A.A.; Walsh, A.; Wilson, D.J.; Woodley, S.M. Advances in computational studies of energy materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3379–3456. [Google Scholar] [CrossRef] [Green Version]
- Caracas, R.; Cohen, R.E. Prediction of a new phase transition in Al2O3 at high pressures. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Funamori, N. High-Pressure Transformation of Al2O3. Science 1997, 278, 1109–1111. [Google Scholar] [CrossRef]
- Cynn, H.; Isaak, D.G.; Cohen, R.E.; Nicol, M.F.; Anderson, O.L. A high-pressure phase transition of corundum predicted by the potential induced breathing model. Am. Mineral. 1990, 75, 439–442. [Google Scholar]
- Jephcoat, A.P.; Hemley, R.J.; Mao, H.K. X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa. Phys. B C 1988, 150, 115–121. [Google Scholar] [CrossRef]
- Dewaele, A.; Torrent, M. Equation of state of α-Al2O3. Phys. Rev. B 2013, 88, 064107. [Google Scholar] [CrossRef]
- Costa, T.M.H.; Gallas, M.R.; Benvenutti, E.V.; da Jornada, J.A.H. Study of Nanocrystalline γ-Al2O3 Produced by High-Pressure Compaction. J. Phys. Chem. B 1999, 103, 4278–4284. [Google Scholar] [CrossRef]
- Hart, H.V.; Drickamer, H.G. Effect of high pressure on the lattice parameters of Al2O3. J. Chem. Phys. 1965, 43, 2265–2266. [Google Scholar] [CrossRef]
- Marton, F.C.; Cohen, R.E. Prediction of a high-pressure phase transition in Al2O3. Am. Miner. 1994, 79, 789–792. [Google Scholar]
- Mashimo, T.; Tsumoto, K.; Nakamura, K.; Noguchi, Y.; Fukuoka, K.; Syono, Y. High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophys. Res. Lett. 2000, 27, 2021–2024. [Google Scholar] [CrossRef]
- Ono, S.; Oganov, A.R.; Koyama, T.; Shimizu, H. Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. Earth Planet. Sci. Lett. 2006, 246, 326–335. [Google Scholar] [CrossRef]
- Zhao, J.; Hearne, G.R.; Maaza, M.; Laher-Lacour, F.; Witcomb, M.J.; Le Bihan, T.; Mezouar, M. Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. J. Appl. Phys. 2001, 90, 3280–3285. [Google Scholar] [CrossRef]
- Thomson, K.T.; Wentzcovitch, R.M.; Bukowinski, M.S.T. Polymorphs of alumina predicted by first principles: Putting pressure on the ruby pressure scale. Science 1996, 274, 1880–1882. [Google Scholar] [CrossRef]
- Lin, J.F.; Degtyareva, O.; Prewitt, C.T.; Dera, P.; Sata, N.; Gregoryanz, E.; Mao, H.K.; Hemley, R.J. Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. Nat. Mater. 2004, 3, 389–393. [Google Scholar] [CrossRef]
- Jahn, S.; Madden, P.A.; Wilson, M. Dynamic simulation of pressure-driven phase transformations in crystalline Al2O3. Phys. Rev. B 2004, 69, 020106. [Google Scholar] [CrossRef]
- Tsuchiya, J.; Tsuchiya, T.; Wentzcovitch, R.M. Transition from the Rh2O3(II)-to-CaIrO3 structure and the high-pressure-temperature phase diagram of alumina. Phys. Rev. B 2005, 72, 020103. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Domene, B.; Ortiz, H.M.; Gomis, O.; Sans, J.A.; Manjón, F.J.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S.N.; Errandonea, D.; Martínez-García, D.; et al. High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. J. Appl. Phys. 2012, 112, 123511. [Google Scholar] [CrossRef]
- García-Domene, B.; Sans, J.A.; Gomis, O.; Manjón, F.J.; Ortiz, H.M.; Errandonea, D.; Santamaría-Pérez, D.; Martínez-García, D.; Vilaplana, R.; Pereira, A.L.J.; et al. Pbca-type In2O3: The high-pressure post-corundum phase at room temperature. J. Phys. Chem. C 2014, 118, 20545–20552. [Google Scholar] [CrossRef] [Green Version]
- Gurlo, A. Structural stability of high-pressure polymorphs in In2O3 nanocrystals: Evidence of stress-induced transition? Angew. Chem. Int. Ed. 2010, 49, 5610–5612. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.W.; Zou, B.; Yu, S.D.; Hao, J.; Wang, K.; Liu, B.B.; Cui, Q.L.; Zou, G.T. High-pressure x-ray diffraction and Raman spectra study of indium oxide. J. Appl. Phys. 2008, 104, 083506. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Liu, J.F.; He, Y.; Chen, W.; Wang, C. Compression behavior and phase transition of cubic In2O3 nanocrystals. J. Appl. Phys. 2011, 109, 063520. [Google Scholar] [CrossRef]
- Tang, S.; Li, Y.; Zhang, J.; Zhu, H.; Dong, Y.; Zhu, P.; Cui, Q. Effects of microstructures on the compression behavior and phase transition routine of In2O3 nanocubes under high pressures. RSC Adv. 2015, 5, 85105–85110. [Google Scholar] [CrossRef]
- Yusa, H.; Tsuchiya, T.; Sata, N.; Ohishi, Y. Rh2O3(II)-type structures in Ga2O3 and In2O3 under high pressure: Experiment and theory. Phys. Rev. B 2008, 77, 064107. [Google Scholar] [CrossRef]
- Yusa, H.; Tsuchiya, T.; Tsuchiya, J.; Sata, N.; Ohishi, Y. α-Gd2S3-type structure in In2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Phys. Rev. B 2008, 78, 092107. [Google Scholar] [CrossRef]
- García-Domene, B.; Sans, J.A.; Manjón, F.J.; Ovsyannikov, S.V.; Dubrovinsky, L.S.; Martinez-Garcia, D.; Gomis, O.; Errandonea, D.; Moutaabbid, H.; Le Godec, Y.; et al. Synthesis and High-Pressure Study of Corundum-Type In2O3. J. Phys. Chem. C 2015, 119, 29076–29087. [Google Scholar] [CrossRef] [Green Version]
- Sans, J.A.; Vilaplana, R.; Errandonea, D.; Cuenca-Gotor, V.P.; García-Domene, B.; Popescu, C.; Manjón, F.J.; Singhal, A.; Achary, S.N.; Martinez-Garcia, D.; et al. Structural and vibrational properties of corundum-type In2O3 nanocrystals under compression. Nanotechnology 2017, 28, 205701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinska-Kalita, K.E.; Kalita, P.E.; Hemmers, O.A.; Hartmann, T. Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression. Phys. Rev. B 2008, 77, 094123. [Google Scholar] [CrossRef]
- Lipinska-Kalita, K.E.; Chen, B.; Kruger, M.B.; Ohki, Y.; Murowchick, J.; Gogol, E.P. High-pressure x-ray diffraction studies of the nanostructured transparent vitroceramic medium K2O-SiO2-Ga2O3. Phys. Rev. B 2003, 68, 035209. [Google Scholar] [CrossRef]
- Luan, S.; Dong, L.; Jia, R. Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures. J. Cryst. Growth 2019, 505, 74–81. [Google Scholar] [CrossRef]
- Machon, D.; McMillan, P.F.; Xu, B.; Dong, J. High-pressure study of the β-to-α transition in Ga2O3. Phys. Rev. B 2006, 73, 094125. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Chen, W.; Zeng, Y.W.; Stahl, K.; Kikegawa, T.; Jiang, J.Z. High-pressure behavior of β-Ga2O3 nanocrystals. J. Appl. Phys. 2010, 107, 033520. [Google Scholar] [CrossRef] [Green Version]
- Claussen, W.F.; Mackenzie, J.D. Crystallization of B2O3 at High Pressures. J. Am. Chem. Soc. 1959, 81, 1007. [Google Scholar] [CrossRef]
- Prewitt, C.T.; Shannon, R.D. Crystal structure of a high-pressure form of B2O3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 869–874. [Google Scholar] [CrossRef]
- Brazhkin, V.V.; Katayama, Y.; Inamura, Y.; Kondrin, M.V.; Lyapin, A.G.; Popova, S.V.; Voloshin, R.N. Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure. JETP Lett. 2003, 78, 393–397. [Google Scholar] [CrossRef]
- Nicholas, J.; Sinogeikin, S.; Kieffer, J.; Bass, J. Spectroscopic evidence of polymorphism in vitreous B2O3. Phys. Rev. Lett. 2004, 92, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Mibe, K.; Fei, Y.; Cody, G.D.; Mysen, B.O. Structure of B2O3 glass at high pressure: A 11B solid-state NMR study. Phys. Rev. Lett. 2005, 94, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, L.F.; Dyuzheva, T.I.; Nikolaev, N.A.; Brazhkin, V.V. Single-crystal growth of the high-pressure phase B2O3 II. Crystallogr. Rep. 2012, 57, 332–335. [Google Scholar] [CrossRef]
- Burianek, M.; Birkenstock, J.; Mair, P.; Kahlenberg, V.; Medenbach, O.; Shannon, R.D.; Fischer, R.X. High-pressure synthesis, long-term stability of single crystals of diboron trioxide, B2O3, and an empirical electronic polarizability of [3]B3+. Phys. Chem. Miner. 2016, 43, 527–534. [Google Scholar] [CrossRef]
- Gomis, O.; Santamaría-Pérez, D.; Ruiz-Fuertes, J.; Sans, J.A.; Vilaplana, R.; Ortiz, H.M.; García-Domene, B.; Manjón, F.J.; Errandonea, D.; Rodríguez-Hernández, P.; et al. High-pressure structural and elastic properties of Tl2O3. J. Appl. Phys. 2014, 116, 133521. [Google Scholar] [CrossRef] [Green Version]
- Weir, S.T.; Mitchell, A.C.; Nellis, W.J. Electrical resistivity of single-crystal Al2O3 shock-compressed in the pressure range 91-220 GPa (0.91-2.20 Mbar). J. Appl. Phys. 1996, 80, 1522–1525. [Google Scholar] [CrossRef]
- Syassen, K. Ruby under pressure. High Press. Res. 2008, 28, 75–126. [Google Scholar] [CrossRef]
- Smyth, J.R.; Jacobsen, S.D.; Hazen, R.M. Comparative Crystal Chemistry of Dense Oxide Minerals. Rev. Miner. Geochem. 2000, 41, 157–186. [Google Scholar] [CrossRef] [Green Version]
- Song, H.I.; Kim, E.S.; Yoon, K.H. Phase transformation and characteristics of beta-alumina. Phys. B C 1988, 150, 148–159. [Google Scholar] [CrossRef]
- Engürlu, S.; Taslicukur Öztürk, Z.; Kuskonmaz, N. Investigation of the Production of β-Al2O3 Solid Electrolyte from Seydişehir α-Al2O3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Derg. 2017, 21, 816. [Google Scholar] [CrossRef]
- Duan, W.; Wentzcovitch, R.M.; Thomson, K.T. First-principles study of high-pressure alumina polymorphs. Phys. Rev. B 1998, 57, 10363–10369. [Google Scholar] [CrossRef] [Green Version]
- Oganov, A.R.; Ono, S. The high-pressure phase of alumina and implications for Earth’s D″ layer. Proc. Natl. Acad. Sci. USA 2005, 102, 10828–10831. [Google Scholar] [CrossRef] [Green Version]
- Hama, J.; Suito, K. The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data. High Temp. High Press. 2002, 34, 323–334. [Google Scholar] [CrossRef]
- Ono, S.; Kikegawa, T.; Ohishi, Y. High-pressure phase transition of hematite, Fe2O3. J. Phys. Chem. Solids 2004, 65, 1527–1530. [Google Scholar] [CrossRef]
- Oganov, A.R.; Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 2004, 430, 445–448. [Google Scholar] [CrossRef]
- Vaidya, S.N. High-pressure high-temperature transitions in nanocrystalline γ Al2O3, γ Fe2O3 and TiO2. Bull. Mater. Sci. 1999, 22, 287–293. [Google Scholar] [CrossRef]
- Mishra, R.S.; Lesher, C.E.; Mukherjee, A.K. High-Pressure Sintering of Nanocrystalline gamma Al2O3. J. Am. Ceram. Soc. 1996, 79, 2989–2992. [Google Scholar] [CrossRef]
- Vaidya, S.N.; Karunakaran, C.; Achary, S.N.; Tyagi, A.K. New polymorphs of alumina. High Press. Res. 1999, 16, 147–160. [Google Scholar] [CrossRef]
- Vaidya, S.N.; Karunakaran, C.; Achary, S.N.; Tyagi, A.K. New polymorphs of alumina: Part II mu and lambda alumina. High Press. Res. 1999, 16, 265–278. [Google Scholar] [CrossRef]
- Bekheet, M.F.; Schwarz, M.R.; Lauterbach, S.; Kleebe, H.J.; Kroll, P.; Riedel, R.; Gurlo, A. Orthorhombic In2O3: A metastable polymorph of indium sesquioxide. Angew. Chem. Int. Ed. 2013, 52, 6531–6535. [Google Scholar] [CrossRef]
- Karazhanov, S.Z.; Ravindran, P.; Vajeeston, P.; Ulyashin, A.; Finstad, T.G.; Fjellvåg, H. Phase stability, electronic structure, and optical properties of indium oxide polytypes. Phys. Rev. B 2007, 76, 075129. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. New high pressure phases having the corundum structure. Solid State Commun. 1966, 4, 629–630. [Google Scholar] [CrossRef]
- Prewitt, C.T.; Shannon, R.D.; Rogers, D.B.; Sleight, A.W. The C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorg. Chem. 1969, 8, 1985–1993. [Google Scholar] [CrossRef]
- Atou, T.; Kusaba, K.; Fukuoka, K.; Kikuchi, M.; Syono, Y. Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. J. Solid State Chem. 1990, 89, 378–384. [Google Scholar] [CrossRef]
- Epifani, M.; Siciliano, P.; Gurlo, A.; Barsan, N.; Weimar, U. Ambient Pressure Synthesis of Corundum-Type In2O3. J. Am. Chem. Soc. 2004, 126, 4078–4079. [Google Scholar] [CrossRef]
- Yu, D.; Wang, D.; Qian, Y. Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. J. Solid State Chem. 2004, 177, 1230–1234. [Google Scholar] [CrossRef]
- Sorescu, M.; Diamandescu, L.; Tarabasanu-Mihaila, D.; Teodorescu, V.S. Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing pathways. J. Mater. Sci. 2004, 39, 675–677. [Google Scholar] [CrossRef]
- Åhman, J.; Svensson, G.; Albertsson, J. A reinvestigation of β-gallium oxide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996, 52, 1336–1338. [Google Scholar] [CrossRef] [Green Version]
- Geller, S. Crystal structure of β-Ga2O3. J. Chem. Phys. 1960, 33, 676–684. [Google Scholar] [CrossRef]
- Remeika, J.P.; Marezio, M. Growth of α-Ga2O3 single crystals at 44 kbars. Appl. Phys. Lett. 1966, 8, 87–88. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Yusa, H.; Tsuchiya, J. Post-Rh2O3(II) transition and the high pressure-temperature phase diagram of gallia: A first-principles and x-ray diffraction study. Phys. Rev. B 2007, 76, 174108. [Google Scholar] [CrossRef]
- Kishimura, H.; Matsumoto, H. Evaluation of the shock-induced phase transition in β-Ga2O3. Jpn. J. Appl. Phys. 2018, 57, 125503. [Google Scholar] [CrossRef]
- Gurr, G.E.; Montgomery, P.W.; Knutson, C.D.; Gorres, B.T. The crystal structure of trigonal diboron trioxide. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 906–915. [Google Scholar] [CrossRef]
- Switzer, J.A. The n-Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. J. Electrochem. Soc. 1986, 133, 722–728. [Google Scholar] [CrossRef]
- Phillips, R.J.; Shane, M.J.; Switzer, J.A. Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. J. Mater. Res. 1989, 4, 923–929. [Google Scholar] [CrossRef]
- Van Leeuwen, R.A.; Hung, C.J.; Kammler, D.R.; Switzer, J.A. Optical and electronic transport properties of electrodeposited thallium(III) oxide films. J. Phys. Chem. 1995, 99, 15247–15252. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Yan, S.L.; Xing, Z.; Xie, Y.; Wu, J.Z.; Feldmann, M.; Chen, J.; Xiong, Q.; Ren, Z.F.; Blaugher, R.D. Superconducting Thallium Oxide and Mercury Oxide Films. MRS Online Proc. Libr. Arch. 2000, 659. [Google Scholar] [CrossRef]
- Ma, C.; Rossman, G.R. Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. Am. Mineral. 2009, 94, 841–844. [Google Scholar] [CrossRef]
- Xue, K.H.; Blaise, P.; Fonseca, L.R.C.; Nishi, Y. Prediction of semimetallic tetragonal Hf2O3 and Zr2O3 from first principles. Phys. Rev. Lett. 2013, 110, 065502. [Google Scholar] [CrossRef] [Green Version]
- Ovsyannikov, S.V.; Trots, D.M.; Kurnosov, A.V.; Morgenroth, W.; Liermann, H.P.; Dubrovinsky, L. Anomalous compression and new high-pressure phases of vanadium sesquioxide, V2O3. J. Phys. Condens. Matter 2013, 25, 385401. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hamnett, A.; Huber, G.; Hullinger, F.; Leiß, M.; Ramasesha, S.K.; Werheit, H. Physics of Non-Tetrahedrally Bonded Binary Compounds III/Physik der Nicht-Tetraedrisch Gebundenen Binären Verbindungen III; Madelung, O., Ed.; Springer: Berlin, Germany, 1984. [Google Scholar]
- Pasternak, M.P.; Rozenberg, G.K.; Machavariani, G.Y.; Naaman, O.; Taylor, R.D.; Jeanloz, R. Breakdown of the mott-hubbard state in Fe2O3: A first-order insulator-metal transition with collapse of magnetism at 50 GPa. Phys. Rev. Lett. 1999, 82, 4663–4666. [Google Scholar] [CrossRef]
- Frost, D.J.; Liebske, C.; Langenhorst, F.; McCammon, C.A.; Trønnes, R.G.; Rubie, D.C. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 2004, 428, 409–412. [Google Scholar] [CrossRef]
- Kupenko, I.; Aprilis, G.; Vasiukov, D.M.; McCammon, C.; Chariton, S.; Cerantola, V.; Kantor, I.; Chumakov, A.I.; Rüffer, R.; Dubrovinsky, L.; et al. Magnetism in cold subducting slabs at mantle transition zone depths. Nature 2019, 570, 102–106. [Google Scholar] [CrossRef]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Forestier, H.; Guiot-Guillain, G. Une nouvelle variété ferromagnétique de sesquioxyde de fer. CR Acad. Sci. (Paris) 1934, 199, 720–722. [Google Scholar]
- Schrader, R.; Büttner, G. Eine neue Eisen(III)-oxidphase: ϵ-Fe2O3. Z. Anorg. Allg. Chem. 1963, 320, 220–234. [Google Scholar] [CrossRef]
- Xu, H.; Lee, S.; Xu, H. Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field. Am. Mineral. 2017, 102, 711–719. [Google Scholar] [CrossRef]
- Dejoie, C.; Sciau, P.; Li, W.; Noé, L.; Mehta, A.; Chen, K.; Luo, H.; Kunz, M.; Tamura, N.; Liu, Z. Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci. Rep. 2015, 4, 4941. [Google Scholar] [CrossRef] [Green Version]
- Tronc, E.; Chanéac, C.; Jolivet, J.P. Structural and Magnetic Characterization of ε-Fe2O3. J. Solid State Chem. 1998, 139, 93–104. [Google Scholar] [CrossRef]
- Tuček, J.; Zbořil, R.; Namai, A.; Ohkoshi, S. ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chem. Mater. 2010, 22, 6483–6505. [Google Scholar] [CrossRef]
- Tuček, J.; Machala, L.; Ono, S.; Namai, A.; Yoshikiyo, M.; Imoto, K.; Tokoro, H.; Ohkoshi, S.; Zbořil, R. Zeta-Fe2O3—A new stable polymorph in iron(III) oxide family. Sci. Rep. 2015, 5, 15091. [Google Scholar] [CrossRef] [Green Version]
- Rozenberg, G.K.; Dubrovinsky, L.S.; Pasternak, M.P.; Naaman, O.; Le Bihan, T.; Ahuja, R. High-pressure structural studies of hematite (Fe2O3). Phys. Rev. B 2002, 65, 064112. [Google Scholar] [CrossRef]
- Badro, J.; Fiquet, G.; Struzhkin, V.V.; Somayazulu, M.; Mao, H.K.; Shen, G.; Le Bihan, T. Nature of the high-pressure transition in Fe2O3 hematite. Phys. Rev. Lett. 2002, 89, 205504. [Google Scholar] [CrossRef] [Green Version]
- Ito, E.; Fukui, H.; Katsura, T.; Yamazaki, D.; Yoshino, T.; Aizawa, Y.; Kubo, A.; Yokoshi, S.; Kawabe, K.; Zhai, S.; et al. Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils. Am. Mineral. 2009, 94, 205–209. [Google Scholar] [CrossRef]
- Bykova, E.; Bykov, M.; Prakapenka, V.; Konôpková, Z.; Liermann, H.-P.; Dubrovinskaia, N.; Dubrovinsky, L. Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Press. Res. 2013, 33, 534–545. [Google Scholar] [CrossRef] [Green Version]
- Sanson, A.; Kantor, I.; Cerantola, V.; Irifune, T.; Carnera, A.; Pascarelli, S. Local structure and spin transition in Fe2O3 hematite at high pressure. Phys. Rev. B 2016, 94, 014112. [Google Scholar] [CrossRef] [Green Version]
- Bykova, E.; Dubrovinsky, L.; Dubrovinskaia, N.; Bykov, M.; McCammon, C.; Ovsyannikov, S.V.; Liermann, H.P.; Kupenko, I.; Chumakov, A.I.; Rüffer, R.; et al. Structural complexity of simple Fe2O3 at high pressures and temperatures. Nat. Commun. 2016, 7, 10661. [Google Scholar] [CrossRef]
- Greenberg, E.; Leonov, I.; Layek, S.; Konopkova, Z.; Pasternak, M.P.; Dubrovinsky, L.; Jeanloz, R.; Abrikosov, I.A.; Rozenberg, G.K. Pressure-Induced Site-Selective Mott Insulator-Metal Transition in Fe2O3. Phys. Rev. X 2018, 8, 31059. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Caldwell, A.; Benedetti, L.R.; Panero, W.; Jeanloz, R. Static compression of α-Fe2O3: Linear incompressibility of lattice parameters and high-pressure transformations. Phys. Chem. Miner. 2003, 30, 582–588. [Google Scholar] [CrossRef]
- Olsen, J.S.; Cousins, C.S.G.; Gerward, L.; Jhans, H.; Sheldon, B.J. A study of the crystal structure of Fe2O3 in the pressure range up to 65 GPa using synchrotron radiation. Phys. Scr. 1991, 43, 327–330. [Google Scholar] [CrossRef]
- Shim, S.H.; Bengtson, A.; Morgan, D.; Sturhahn, W.; Catalli, K.; Zhao, J.; Lerche, M.; Prakapenka, V. Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proc. Natl. Acad. Sci. USA 2009, 106, 5508–5512. [Google Scholar] [CrossRef] [Green Version]
- Syono, Y.; Ito, A.; Morimoto, S.; Suzuki, T.; Yagi, T.; Akimoto, S. Mössbauer study on the high pressure phase of Fe2O3. Solid State Commun. 1984, 50, 97–100. [Google Scholar] [CrossRef]
- Nasu, S.; Kurimoto, K.; Nagatomo, S.; Endo, S.; Fujita, F.E. 57Fe Mössbauer study under high pressure; ε-Fe and Fe2O3. Hyperfine Interact. 1986, 29, 1583–1586. [Google Scholar] [CrossRef]
- Jiang, J.Z.; Olsen, J.S.; Gerward, L.; Mørup, S. Enhanced bulk modulus and reduced transition pressure in γ-Fe2O3 nanocrystals. Europhys. Lett. 1998, 44, 620–626. [Google Scholar] [CrossRef]
- Zhu, H.; Ma, Y.; Yang, H.; Ji, C.; Hou, D.; Guo, L. Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3). J. Phys. Chem. Solids 2010, 71, 1183–1186. [Google Scholar] [CrossRef]
- MacHala, L.; Tuček, J.; Zbořil, R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011, 23, 3255–3272. [Google Scholar] [CrossRef]
- Hearne, G.; Pischedda, V. Pressure response of vacancy ordered maghemite (γ-Fe2O3) and high pressure transformed hematite (α-Fe2O3). J. Solid State Chem. 2012, 187, 134–142. [Google Scholar] [CrossRef]
- Sans, J.A.; Monteseguro, V.; Garbarino, G.; Gich, M.; Cerantola, V.; Cuartero, V.; Monte, M.; Irifune, T.; Muñoz, A.; Popescu, C. Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions. Nat. Commun. 2018, 9, 4554. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.W.; Geller, S.; Cape, J.A.; Espinosa, G.P. Magnetic and crystallographic transitions in the α-Mn2O3-Fe2O3 system. Phys. Rev. 1968, 175, 686–695. [Google Scholar] [CrossRef]
- Geller, S. Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971, 27, 821–828. [Google Scholar] [CrossRef]
- Yamanaka, T.; Nagai, T.; Okada, T.; Fukuda, T. Structure change of Mn2O3 under high pressure and pressure-induced transition. Z. Kristallog. 2005, 220, 938–945. [Google Scholar] [CrossRef]
- Santillán, J.; Shim, S.H.; Shen, G.; Prakapenka, V.B. High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys. Res. Lett. 2006, 33, L15307. [Google Scholar] [CrossRef]
- Shim, S.H.; LaBounty, D.; Duffy, T.S. Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Phys. Chem. Miner. 2011, 38, 685–691. [Google Scholar] [CrossRef]
- Mukherjee, G.D.; Vaidya, S.N.; Karunakaran, C. High Pressure and High Temperature Studies on Manganese Oxides. Phase Transit. 2002, 75, 557–566. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L. Perovskite-like Mn2O3: A path to new manganites. Angew. Chem. Int. Ed. 2013, 52, 1494–1498. [Google Scholar] [CrossRef]
- Hong, F.; Yue, B.; Hirao, N.; Liu, Z.; Chen, B. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure. Sci. Rep. 2017, 7, 44078. [Google Scholar] [CrossRef] [Green Version]
- Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L. A hard oxide semiconductor with a direct and narrow bandgap and switchable p-n electrical conduction. Adv. Mater. 2014, 26, 8185–8191. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Johnson, R.D.; Manuel, P.; Tsirlin, A.A.; Abakumov, A.M.; Kozlenko, D.P.; Sun, Y.; Dubrovinsky, L.; Ovsyannikov, S.V. Magneto-orbital texture in the perovskite modification of Mn2O3. Phys. Rev. B 2018, 98, 014426. [Google Scholar] [CrossRef]
- McWhan, D.B.; Rice, T.M.; Remeika, J.P. Mott Transition in Cr-Doped V2O3. Phys. Rev. Lett. 1969, 23, 1384–1387. [Google Scholar] [CrossRef]
- Lupi, S.; Baldassarre, L.; Mansart, B.; Perucchi, A.; Barinov, A.; Dudin, P.; Papalazarou, E.; Rodolakis, F.; Rueff, J.P.; Itié, J.P.; et al. A microscopic view on the Mott transition in chromium-doped V2O3. Nat. Commun. 2010, 1, 105. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.; Stork, A.; Nakhal, S.; Wessel, C.; Reimann, C.; Hermes, W.; Müller, A.; Ressler, T.; Pöttgen, R.; Bredow, T.; et al. Bixbyite-Type V2O3—A Metastable Polymorph of Vanadium Sesquioxide. Inorg. Chem. 2011, 50, 6762–6766. [Google Scholar] [CrossRef] [PubMed]
- McWhan, D.B.; Remeika, J.P. Metal-Insulator Transition in (V1 − xCrx)O3. Phys. Rev. B 1970, 2, 3734–3750. [Google Scholar] [CrossRef]
- Jayaraman, A.; McWhan, D.B.; Remeika, J.P.; Dernier, P.D. Critical Behavior of the Mott Transition in Cr-Doped V2O3. Phys. Rev. B 1970, 2, 3751–3756. [Google Scholar] [CrossRef]
- Carter, S.A.; Rosenbaum, T.F.; Lu, M.; Jaeger, H.M.; Metcalf, P.; Honig, J.M.; Spalek, J. Magnetic and transport studies of pure V2O3 under pressure. Phys. Rev. B 1994, 49, 7898–7903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limelette, P.; Georges, A.; Jérome, D.; Wzietek, P.; Metcalf, P.; Honig, J.M. Universality and critical behavior at the Mott transition. Science 2003, 302, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Rodolakis, F.; Hansmann, P.; Rueff, J.-P.; Toschi, A.; Haverkort, M.W.; Sangiovanni, G.; Tanaka, A.; Saha-Dasgupta, T.; Andersen, O.K.; Held, K.; et al. Inequivalent Routes across the Mott Transition in V2O3 Explored by X-Ray Absorption. Phys. Rev. Lett. 2010, 104, 047401. [Google Scholar] [CrossRef] [Green Version]
- Alyabyeva, N.; Sakai, J.; Bavencoffe, M.; Wolfman, J.; Limelette, P.; Funakubo, H.; Ruyter, A. Metal-insulator transition in V2O3 thin film caused by tip-induced strain. Appl. Phys. Lett. 2018, 113, 241603. [Google Scholar] [CrossRef]
- Finger, L.W.; Hazen, R.M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 1980, 51, 5362–5367. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.; Qin, S. Pressure-induced phase transition of V2O3. Chin. Phys. Lett. 2012, 29, 106101. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.; Qin, S. A nine-fold coordinated vanadium by oxygen in V2O3 from first-principles calculations. Eur. Phys. J. B 2012, 85, 267. [Google Scholar] [CrossRef]
- Aggarwal, P.S.; Goswami, A. An oxide of tervalent nickel. J. Phys. Chem. 1961, 65, 2105. [Google Scholar] [CrossRef]
- Conell, R.S.; Corrigan, D.A.; Powell, B.R. The electrochromic properties of sputtered nickel oxide films. Sol. Energy Mater. Sol. Cells 1992, 25, 301–313. [Google Scholar] [CrossRef]
- Jones, P.G.; Rumpel, H.; Schwarzmann, E.; Sheldrick, G.M. Gold (III) oxide. Acta Cryst. B 1979, 35, 1435–1437. [Google Scholar] [CrossRef]
- Minomura, S.; Drickamer, H.G. Effect of Pressure on the Electrical Resistance of some Transition-Metal Oxides and Sulfides. J. Appl. Phys. 1963, 34, 3043–3048. [Google Scholar] [CrossRef]
- Chenavas, J.; Joubert, J.C.; Marezio, M. Low-spin → high-spin state transition in high pressure cobalt sesquioxide. Solid State Commun. 1971, 9, 1057–1060. [Google Scholar] [CrossRef]
- Rekhi, S.; Dubrovinsky, L.S.; Ahuja, R.; Saxena, S.K.; Johansson, B. Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. J. Alloy. Compd. 2000, 302, 16–20. [Google Scholar] [CrossRef]
- Kota, Y.; Yoshimori, Y.; Imamura, H.; Kimura, T. Enhancement of magnetoelectric operating temperature in compressed Cr2O3 under hydrostatic pressure. Appl. Phys. Lett. 2017, 110, 042902. [Google Scholar] [CrossRef]
- Kantor, A.; Kantor, I.; Merlini, M.; Glazyrin, K.; Prescher, C.; Hanfland, M.; Dubrovinsky, L. High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction. Am. Mineral. 2012, 97, 1764–1770. [Google Scholar] [CrossRef]
- Shim, S.H.; Duffy, T.S.; Jeanloz, R.; Yoo, C.S.; Iota, V. Raman spectroscopy and x-ray diffraction of phase transitions in Cr2O3 to 61 GPa. Phys. Rev. B 2004, 69, 144107. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.Y.; Duan, W.; Wentzcovitch, R.M. Magnetostructural effects and phase transition in Cr2O3 under pressure. Phys. Rev. B 2000, 62, 11997–12000. [Google Scholar] [CrossRef] [Green Version]
- Golosova, N.O.; Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Liermann, H.-P.; Glazyrin, K.V.; Savenko, B.N. Structural and magnetic properties of Cr2O3 at high pressure. J. Alloy. Compd. 2017, 722, 593–598. [Google Scholar] [CrossRef]
- Nishio-Hamane, D.; Katagiri, M.; Niwa, K.; Sano-Furukawa, A.; Okada, T.; Yagi, T. A new high-pressure polymorph of Ti2O3: Implication for high-pressure phase transition in sesquioxides. High Press. Res. 2009, 29, 379–388. [Google Scholar] [CrossRef]
- Umemoto, K.; Wentzcovitch, R.M. Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar. Proc. Natl. Acad. Sci. USA 2008, 105, 6526–6530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovsyannikov, S.V.; Wu, X.; Shchennikov, V.V.; Karkin, A.E.; Dubrovinskaia, N.; Garbarino, G.; Dubrovinsky, L. Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3 under high pressures and high temperatures. J. Phys. Condens. Matter 2010, 22, 375402. [Google Scholar] [CrossRef] [PubMed]
- Ovsyannikov, S.V.; Wu, X.; Karkin, A.E.; Shchennikov, V.V.; Manthilake, G.M. Pressure-temperature phase diagram of Ti2O3 and physical properties in the golden Th2S3-type phase. Phys. Rev. B 2012, 86, 024106. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Wu, X.; Garbarino, G.; Núñez-Regueiro, M.; Shchennikov, V.V.; Khmeleva, J.A.; Karkin, A.E.; Dubrovinskaia, N.; Dubrovinsky, L. High-pressure behavior of structural, optical, and electronic transport properties of the golden Th2S3-type Ti2O3. Phys. Rev. B 2013, 88, 184106. [Google Scholar] [CrossRef] [Green Version]
- Biesterbos, J.W.M.; Hornstra, J. The Crystal Structure of the high-temperature low-pressure form of Rh2O3. J. Less Common Met. 1973, 30, 121–125. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Synthesis and structure of a new high-pressure form of Rh2O3. J. Solid State Chem. 1970, 2, 134–136. [Google Scholar] [CrossRef]
- Zhuo, S.; Sohlberg, K. Origin of stability of the high-temperature, low-pressure Rh2O3 III form of rhodium sesquioxide. J. Solid State Chem. 2006, 179, 2126–2132. [Google Scholar] [CrossRef]
- Becker, N.; Reimann, C.; Weber, D.; Lüdtke, T.; Lerch, M.; Bredow, T.; Dronskowski, R. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs. Z. Kristallogr. 2017, 232, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Oganov, A.R.; Li, X.; Xue, K.H.; Wang, Z.; Dong, H. Pressure-induced novel compounds in the Hf-O system from first-principles calculations. Phys. Rev. B 2015, 92, 184104. [Google Scholar] [CrossRef] [Green Version]
- Ai, Z.; Huang, Y.; Lee, S.; Zhang, L. Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. J. Alloy. Compd. 2011, 509, 2044–2049. [Google Scholar] [CrossRef]
- Zheng, F.L.; Li, G.R.; Ou, Y.N.; Wang, Z.L.; Su, C.Y.; Tong, Y.X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 2010, 46, 5021–5023. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Jiang, Y.; Sun, W.; Wang, H.; Jin, C.; Yan, M. Reversible Conversion-Alloying of Sb2O3 as a High-Capacity, High Rate, and Durable Anode for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 19449–19455. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Giri, A.K.; Chakravorty, D. AC conductivity of Sb2O3-P2O5 glasses. Phys. Rev. B 1993, 47, 16242. [Google Scholar] [CrossRef]
- Shen, Z.-X.; Chen, G.-Q.; Ni, J.-H.; Li, X.-S.; Xiong, S.-M.; Qiu, Q.-Y.; Zhu, J.; Tang, W.; Sun, G.-L.; Yang, K.-Q.; et al. Use of Arsenic Trioxide (As2O3) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokineticsin Relapsed Patients. Blood 1997, 89, 3354–3360. [Google Scholar] [CrossRef]
- Shen, Z.-X.; Shi, Z.-Z.; Fang, J.; Gu, B.-W.; Li, J.-M.; Zhu, Y.-M.; Shi, J.-Y.; Zheng, P.-Z.; Yan, H.; Liu, Y.F.; et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2004, 101, 5328–5335. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Koyama, Y.; Togo, A.; Choi, M.; Tanaka, I. Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3 crystal polymorphs. Phys. Rev. B 2011, 83, 214110. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Koyama, Y.; Tanaka, I. Structures and energetics of Bi2O3 polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations. Phys. Rev. B 2010, 81, 094117. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zeng, Q.; Zhang, H.; Wang, S.; Hirai, S.; Zeng, Z.; Mao, W.L. Structural transition and amorphization in compressed α-Sb2O3. Phys. Rev. B 2015, 91, 184112. [Google Scholar] [CrossRef] [Green Version]
- Sans, J.A.; Manjón, F.J.; Popescu, C.; Cuenca-Gotor, V.P.; Gomis, O.; Muñoz, A.; Rodríguez-Hernández, P.; Contreras-García, J.; Pellicer-Porres, J.; Pereira, A.L.J.; et al. Ordered helium trapping and bonding in compressed arsenolite: Synthesis of As4O6·2He. Phys. Rev. B 2016, 93, 054102. [Google Scholar] [CrossRef]
- Cuenca-Gotor, V.P.; Gomis, O.; Sans, J.A.; Manjon, F.J.; Rodrıguez-Hernandez, P.; Muñoz, A. Vibrational and elastic properties of As4O6 and As4O6·2He at high pressures: Study of dynamical and mechanical stability. J. Appl. Phys. 2016, 120, 155901. [Google Scholar] [CrossRef] [Green Version]
- Guńka, P.A.; Dziubek, K.F.; Gładysiak, A.; Dranka, M.; Piechota, J.; Hanfland, M.; Katrusiak, A.; Zachara, J. Compressed Arsenolite As4O6 and Its Helium Clathrate As4O6·2He. Cryst. Growth Des. 2015, 15, 3740–3745. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.L.J.; Gracia, L.; Santamaría-Pérez, D.; Vilaplana, R.; Manjón, F.J.; Errandonea, D.; Nalin, M.; Beltrán, A. Structural and vibrational study of cubic Sb2O3 under high pressure. Phys. Rev. B 2012, 85, 174108. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.L.J.; Sans, J.A.; Vilaplana, R.; Gomis, O.; Manjón, F.J.; Rodríguez-Hernández, P.; Muñoz, A.; Popescu, C.; Beltrán, A. Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. J. Phys. Chem. C 2014, 118, 23189–23201. [Google Scholar] [CrossRef] [Green Version]
- Orosel, D.; Dinnebier, R.E.; Blatov, V.A.; Jansen, M. Structure of a new high-pressure–high-temperature modification of antimony(III) oxide, γ-Sb2O3, from high-resolution synchrotron powder diffraction data. Acta Cryst. B 2012, 68, 1–7. [Google Scholar] [CrossRef]
- Cornei, N.; Tancret, N.; Abraham, F.; Mentré, O. New ε-Bi2O3 Metastable Polymorph. Inorg. Chem. 2006, 45, 4886–4888. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Li, X.; Ma, M.; Li, X.; Wang, C.-H.; He, B.; Wang, S.; Chen, Z.; Zhao, Y.; et al. Pressure-induced anomalies and structural instability in compressed β-Sb2O3. Phys. Chem. Chem. Phys. 2018, 20, 11430–11436. [Google Scholar] [CrossRef]
- Geng, A.-H.; Cao, L.-H.; Ma, Y.-M.; Cui, Q.-L.; Wan, C.-M. Experimental Observation of Phase Transition in Sb2O3 under High Pressure. Chin. Phys. Lett. 2016, 33, 097401. [Google Scholar] [CrossRef]
- Harwig, H.A. On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-Phase. Z. Anorg. Allg. Chem. 1978, 444, 151–166. [Google Scholar] [CrossRef]
- Pereira, A.L.J.; Errandonea, D.; Beltrán, A.; Gracia, L.; Gomis, O.; Sans, J.A.; García-Domene, B.; Miquel-Veyrat, A.; Manjón, F.J.; Muñoz, A.; et al. Structural study of α-Bi2O3 under pressure. J. Phys. Condens. Matter 2013, 25, 475402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavriliuk, A.G.; Struzhkin, V.; Lyubutin, S.; Eremets, I.; Trojan, A.; Artemov, V. Equation of state and high-pressure irreversible amorphization in Y3Fe5O12. JETP Lett. 2006, 83, 37–41. [Google Scholar] [CrossRef]
- Locherer, T.; Dasari, L.; Prasad, V.K.; Dinnebier, R.; Wedig, U.; Jansen, M. High-pressure structural evolution of HP-Bi2O3. Phys. Rev. B 2011, 83, 214102. [Google Scholar] [CrossRef]
- Ghedia, S.; Locherer, T.; Dinnebier, R.; Prasad, D.L.V.K.; Wedig, U.; Jansen, M.; Senyshyn, A. High-pressure and high-temperature multianvil synthesis of metastable polymorphs of Bi2O3: Crystal structure and electronic properties. Phys. Rev. B 2010, 82, 024106. [Google Scholar] [CrossRef]
- Frueh, A.J., Jr. The crystal structure of claudetite (monoclinic As2O3). Am. Miner. 1951, 36, 833–850. [Google Scholar]
- Pertlik, F. Die Kristallstruktur der monoklinen Form von As2O3 (Claudetit II). Mon. Chem. 1975, 106, 755–762. [Google Scholar] [CrossRef]
- Soignard, E.; Amin, S.A.; Mei, Q.; Benmore, C.J.; Yarger, J.L. High-pressure behavior of As2O3: Amorphous-amorphous and crystalline-amorphous transitions. Phys. Rev. B 2008, 77, 144113. [Google Scholar] [CrossRef]
- Guńka, P.A.; Dranka, M.; Piechota, J.; Żukowska, G.Z.; Zalewska, A.; Zachara, J. As2O3 Polymorphs: Theoretical Insight into Their Stability and Ammonia Templated Claudetite II Crystallization. Cryst. Growth Des. 2012, 12, 5663–5670. [Google Scholar] [CrossRef]
- Guńka, P.A.; Dranka, M.; Hanfland, M.; Dziubek, K.F.; Katrusiak, A.; Zachara, J. Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Cryst. Growth Des. 2015, 15, 3950–3954. [Google Scholar] [CrossRef]
- Jansen, M.; Moebs, M. Structural Investigations on Solid Tetraphosphorus Hexaoxide. Inorg. Chem. 1984, 23, 4486–4488. [Google Scholar] [CrossRef]
- Clark, G.L.; Schieltz, N.C.; Quirke, T.T. A New Study of the Preparation and Properties of the Higher Oxides of Lead. J. Am. Chem. Soc. 1937, 59, 2305–2308. [Google Scholar] [CrossRef]
- Bouvaist, J.; Weigel, D. Sesquioxyde de plomb, Pb2O3. I. Determination de la structure. Acta Cryst. A 1970, 26, 501–510. [Google Scholar] [CrossRef]
- Seko, A.; Togo, A.; Oba, F.; Tanaka, I. Structure and Stability of a Homologous Series of Tin Oxides. Phys. Rev. Lett. 2008, 100, 045702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.-H.; Tan, R.-Q.; Yang, Y.; Xu, W.; Li, J.; Shen, W.-F.; Wu, G.-Q.; Yang, X.-F.; Song, W.-J. Synthesis mechanism of heterovalent Sn2O3 nanosheets in oxidation annealing process. Chin. Phys. B 2015, 24, 070505. [Google Scholar] [CrossRef]
- Kuang, X.L.; Liu, T.M.; Zeng, W.; Peng, X.H.; Wang, Z.C. Hydrothermal synthesis and characterization of novel Sn2O3 hierarchical nanostructures. Mat. Lett. 2016, 165, 235–238. [Google Scholar] [CrossRef]
- Imre, A.R. On the existence of negative pressure states. Phys. Stat. Sol. (b) 2007, 244, 893–899. [Google Scholar] [CrossRef]
- McMillan, P.F. New materials from high-pressure experiments. Nat. Mater. 2002, 1, 19–25. [Google Scholar] [CrossRef]
- Manjón, F.J.; Errandonea, D.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A. Negative pressures in CaWO4 nanocrystals. J. Appl. Phys. 2009, 105, 094321. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Yagasaki, T.; Matsumoto, M.; Tanaka, H. Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability. J. Phys. Chem. 2019, 150, 041102. [Google Scholar] [CrossRef] [Green Version]
Comp. | PC→A | PC→B | PB→A | Tech. | PTM | Reference |
---|---|---|---|---|---|---|
Sc2O3 | 36 | XRD | MEW | [46] | ||
25–28 | XRD | Neon | [48] | |||
Lu2O3 | 14 | XRD | N2 | [11] | ||
12.7–18.2 | XRD | Silicon Oil | [12] | |||
17.0–21.4 | XRD | ME | [13] | |||
Yb2O3 | 13 | XRD | Silicon Oil | [15] | ||
30–47 | 14 | 11.9 | XRD | MEW | [14,16] | |
17.0 | XRD | N2 | [11] | |||
20.6 | RS | ME | [18] | |||
Tm2O3 | 7 | XRD | MEW | [19] | ||
12 | XRD | MEW | [20] | |||
Er2O3 | 9.9–16.3 | XRD | Silicon Oil | [66] | ||
14 | XRD | N2 | [11] | |||
17.8–20.0 | 13.6 | 17.8–23.5 | XRD | He | [22] | |
6.6–12.7 | 22.5–42.0 | XRD | Silicon Oil | |||
Y2O3 | 13.0 | XRD | N2 | [11] | ||
15.0–25.6 | 15.0–25.6 | 14.3–17.5 | XRD | MEW | [57] | |
23.5–44.0 | XRD | Neon | [62] | |||
13 | 24.5 | XRD | No PTM | [54] | ||
Ho2O3 | 8.9–16.3 | 14.8–26.4 | XRD | Silicon Oil | [24] | |
9.5 | XRD | MEW | [19] | |||
9.5–16.0 | XRD | MEW | [23] | |||
8.8 | XRD | MEW | [20] | |||
Dy2O3 | 7.7–18.8 | 10.9–26.6 | XRD | Silicon Oil | [28] | |
Tb2O3 | 7 | 12 | XRD | MEW | [61] | |
Gd2O3 | 7.0–15.0 | 6.8 | XRD | MEW | [31] | |
8.9–14.8 | 2.5 | 8.9 | XRD | Ar | [33] | |
7.0 | XRD | N2, Ar, He | [11] | |||
8.6–12.5 | 5.1 | XRD | Silicon Oil | [34] | ||
12.0 | XRD | MEW | [19] | |||
Eu2O3 | 4.7 | XRD | Silicon Oil | [63] | ||
5.0–13.1 | XRD | Silicon Oil | [40] | |||
6.0 | XRD | N2 | [11] | |||
5.7–12.9 | XRD | MEW | [41,42] | |||
Sm2O3 | 3.2–3.9 | XRD | Polyethy. | [64] | ||
7.5–12.5 | 4.7 | XRD | Silicon Oil | [44] | ||
4.0 | XRD | N2, Ar | [11] | |||
4.2 | 2.5 | XRD | Silicon Oil | [45] |
Reference | |||||
Al2O3 | 95 (1200 K) | [86] | |||
96 (>2000 K) | [97] | ||||
150 (>1500 K) | [94] | ||||
170 (2500 K) | [127] | ||||
In2O3 | PD→A | PD→B | PB→E | PB→F | |
6.5 (1273 K) | [140] | ||||
15–25 (SW) | [141] | ||||
31 | [101] | ||||
7 (>1700 K) | [106] | ||||
40 | [107] | ||||
12 | [101] | ||||
Gd2O3 | PG→A | PG→B | |||
4.4 (1273 K) | [147] | ||||
20–29 | [113] | ||||
16 (SW) | [149] | ||||
16.4–39.2 (NP) | [114] | ||||
65 (2300 K) | [106] | ||||
B2O3 | PH→I | ||||
3.5 (800 K) | [116,120] | ||||
Tl2O3 | PD→A | ||||
6.5 (>720 K) | [140] |
Compound | PT | Temperature | HP Phase | Reference |
---|---|---|---|---|
α-Fe2O3 (hematite, ) | 54 | RT | DPv, P | [175] |
α-Fe2O3 (hematite, ) | 67 | RT | Aba2 | |
α-Fe2O3 (hematite, ) | 40 | LH | Rh2O3-II, Pbcn | [173] |
α-Fe2O3 (hematite, ) | 68 | LH | PPv, Cmcm | |
β-Fe2O3 (Ia) | 30 | RT | “ζ-Fe2O3” | [169] |
γ-Fe2O3 (maghemite, Fdm) | 35 | RT | α-Fe2O3 | [182] |
ε-Fe2O3 (luogufengite, Pna21) | 27 | RT | ε′-Fe2O3 | [186] |
α-Mn2O3 (bixbyite, Ia) | 16–25 | RT | PPv, Cmcm | [190] |
α-Mn2O3 (bixbyite, Ia) | 18 | 800 K | Pv, P | [193] |
α-Mn2O3 (bixbyite, Ia) | 13 | 1100 K | ε-Mn2O3, | |
V2O3 (karelianite, ) | 21–27 | LH | Rh2O3-II, Pbcn | [157] |
V2O3 (karelianite, ) | 50 | LH | PPv, Cmcm (?) | |
Ti2O3 (tistarite, ) | 19 | 1850 K | Th2S3-type, Pnma | [220] |
s.g. | Compound | 2nd-Order PT | 1st-Order PT | PIA | Technique | Reference | |
---|---|---|---|---|---|---|---|
Fdm | As4O6 | - | - | 18.7 | DFT | [240] | |
- | - | 15 | XRD (MEW) | [239] | |||
- | - | - | XRD (He) | [241] | |||
Sb4O6 | 3.5 | 10 | XRD, RS, DFT (MEW) | [242] | |||
- | 25 | 30 | XRD (Ne) | [238] | |||
P21/c | mII-As2O3 (claudetite II) | 2 | 6 | 11 | - | XRD (He) | [256] |
α-Bi2O3 | - | - | 20 | XRD, RS, DFT (MEW, Ar) | [249] | ||
mI-As2O3 (claudetite I) | - | - | - | RS | [253] | ||
Pccn | β-Sb2O3 | 7 | 15 | 33 | XRD, RS (Ne) | [246] | |
- | 13.5 | - | XRD, RS (MEW) | [247] | |||
P21c | β-Bi2O3 | 2 | - | 12 | XRD, RS, DFT (MEW) | [243] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjón, F.J.; Sans, J.A.; Ibáñez, J.; Pereira, A.L.d.J. Pressure-Induced Phase Transitions in Sesquioxides. Crystals 2019, 9, 630. https://doi.org/10.3390/cryst9120630
Manjón FJ, Sans JA, Ibáñez J, Pereira ALdJ. Pressure-Induced Phase Transitions in Sesquioxides. Crystals. 2019; 9(12):630. https://doi.org/10.3390/cryst9120630
Chicago/Turabian StyleManjón, Francisco Javier, Juan Angel Sans, Jordi Ibáñez, and André Luis de Jesús Pereira. 2019. "Pressure-Induced Phase Transitions in Sesquioxides" Crystals 9, no. 12: 630. https://doi.org/10.3390/cryst9120630
APA StyleManjón, F. J., Sans, J. A., Ibáñez, J., & Pereira, A. L. d. J. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals, 9(12), 630. https://doi.org/10.3390/cryst9120630