In Situ Synchrotron X-ray Diffraction Reciprocal Space Mapping Measurements in the RF-MBE Growth of GaInN on GaN and InN
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kishino, K.; Nagashima, K.; Yamano, K. Monolithic Integration of InGaN-Based Nanocolumn Light-Emitting Diodes with Different Emission Colors. Appl. Phys. Express 2013, 6, 012101. [Google Scholar] [CrossRef]
- Kawanishi, H. IR/R/G/B laser diodes for multi-wavelength applications. Opt. Rev. 2019, 26, 152. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.; Akasaki, I. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells. JPN J. Appl. Phys. 1997, 36, L382. [Google Scholar] [CrossRef]
- Grandjean, N.; Massies, J. Real time control of InxGa1−xN molecular beam epitaxy growth. Appl. Phys. Lett. 1998, 72, 1078. [Google Scholar] [CrossRef]
- Böttcher, T.; Einfeldt, S.; Kirchner, V.; Figge, S.; Heinke, H.; Hommel, D.; Selke, H.; Ryder, P.L. Incorporation of indium during molecular beam epitaxy of InGaN. Appl. Phys. Lett. 1998, 73, 3232. [Google Scholar] [CrossRef]
- O’Steen, M.L.; Fedler, F.; Hauenstein, R.J. Effect of substrate temperature and V/III flux ratio on In incorporation for InGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 1999, 75, 2280. [Google Scholar] [CrossRef]
- Adelmann, C.; Langer, R.; Feuillet, G.; Daudin, B. Indium incorporation during the growth of InGaN by molecular-beam epitaxy studied by reflection high-energy electron diffraction intensity oscillations. Appl. Phys. Lett. 1999, 75, 3518. [Google Scholar] [CrossRef]
- Storm, D.F. Incorporation kinetics of indium and gallium in indium gallium nitride: A phenomenological model. J. Appl. Phys. 2001, 89, 2452. [Google Scholar] [CrossRef]
- Nanishi, Y.; Saito, Y.; Yamaguchi, T. RF-molecular beam epitaxy growth and properties of InN and related alloys. JPN J. Appl. Phys. 2003, 42, 2549. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M.H.; Cao, Y.G.; Wu, H.S.; Tong, S.Y. A Study of InxGa1-xN Growth by reflection high-energy electron diffraction. J. Appl. Phys. 2005, 97, 023502. [Google Scholar] [CrossRef]
- Illiopoulos, E.; Georgakilas, A.; Dimakis, E.; Adikimenakis, A.; Tsagaraki, K.; Androulidaki, M.; Pelekanos, N.T. InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy. Phys. Status Solidi A 2006, 203, 102. [Google Scholar] [CrossRef]
- Papadomanolaki, E.; Bazioti, C.; Kazazis, S.A.; Androulidaki, M.; Dimitrakopulos, G.P.; Iliopoulos, E.E. Molecular beam epitaxy of thick InGaN(0001) films: Effects of substrate temperature on structural and electronic properties. J. Cryst. Growth 2016, 437, 20. [Google Scholar] [CrossRef]
- Moseley, M.; Billingsley, D.; Henderson, W.; Trybus, E.; Doolittle, W.A. Transient atomic behavior and surface kinetics of GaN. J. Appl. Phys. 2009, 106, 014905. [Google Scholar] [CrossRef]
- Moseley, M.; Gunning, B.; Greenlee, J.; Lowder, J.; Namkoong, G.; Doolittle, W.A. Observation and control of the surface kinetics of InGaN for the elimination of phase separation. J. Appl. Phys. 2012, 112, 014909. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nanishi, Y. Indium Droplet Elimination by Radical Beam Irradiation for Reproducible and High-Quality Growth of InN by RF Molecular Beam Epitaxy. Appl. Phys. Express 2009, 2, 051001. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Uematsu, N.; Araki, T.; Honda, T.; Yoon, E.; Nanishi, Y. Growth of thick InGaN films with entire alloy composition using droplet elimination by radical-beam irradiation. J. Cryst. Growth 2013, 377, 123. [Google Scholar] [CrossRef]
- Pereira, S.; Correia, M.R.; Pereira, E.; O’Donnell, K.P.; Alves, E.; Sequeira, A.D.; Franco, N.; Watson, I.M.; Deatcher, C.J. Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping. Appl. Phys. Lett. 2002, 80, 3913. [Google Scholar] [CrossRef]
- Fischer, A.M.; Wei, Y.O.; Ponce, F.A.; Moseley, M.; Gunning, B.; Doolittle, W.A. Highly luminescent, high-indium-content InGaN film with uniform composition and full misfit-strain relaxation. Appl. Phys. Lett. 2013, 103, 131101. [Google Scholar] [CrossRef]
- Jiao, W.; Kong, W.; Li, J.; Collar, K.; Kim, T.-H.; Brown, A.S. The relationship between depth-resolved composition and strain relaxation in InAlN and InGaN films grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 162102. [Google Scholar]
- Valdueza-Felip, S.; Bellet-Amalric, E.; Núñez-Cascajero, A.; Wang, Y.; Chauvat, M.-P.; Ruterana, P.; Pouget, S.; Lorenz, K.; Alves, E.; Monroy, E. High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: Growth conditions, strain relaxation, and In incorporation kinetics. J. Appl. Phys. 2014, 116, 233504. [Google Scholar] [CrossRef]
- Fabien, C.A.M.; Gunning, B.P.; Doolittle, W.A.; Fischer, A.M.; Wei, Y.O.; Xie, H.; Ponce, F.A. Low-temperature growth of InGaN films over the entire composition range by MBE. J. Cryst. Growth 2015, 425, 115. [Google Scholar] [CrossRef]
- Bazioti, C.; Papadomanolaki, E.; Kehagias, T.; Walther, T.; Smalc-Koziorowska, J.; Pavlidou, E.; Komninou, P.; Karakostas, T.; Iliopoulos, E.; Dimitrakopulos, G.P. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy. J. Appl. Phys. 2015, 118, 155301. [Google Scholar] [CrossRef]
- Richard, M.-I.; Highland, M.J.; Fister, T.T.; Munkholm, A.; Mei, J.; Streiffer, S.K.; Thompson, C.; Fuoss, P.H.; Stephenson, G.B. In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN. Appl. Phys. Lett. 2010, 96, 051911. [Google Scholar] [CrossRef]
- Kachkanov, V.; Dolbnya, I.; O’Donnell, K.; Lorenz, K.; Pereira, S.; Watson, I.; Sadler, T.; Li, H.; Zubialevich, V.; Parbrook, P. Characterisation of III-nitride materials by synchrotron X-ray microdiffraction reciprocal space mapping. Phys. Status Solidi C 2013, 10, 481. [Google Scholar] [CrossRef]
- Ju, G.; Fuchi, S.; Tabuchi, M.; Amano, H.; Takeda, Y. Continuous in situ X-ray reflectivity investigation on epitaxial growth of InGaN by metalorganic vapor phase epitaxy. J. Cryst. Growth 2014, 407, 68. [Google Scholar] [CrossRef]
- Sasaki, T.; Ishikawa, F.; Yamaguchi, T.; Takahasi, M. Nitride-MBE system for in situ synchrotron X-ray measurements. JPN. J. Appl. Phys. 2016, 55, 05FB05. [Google Scholar] [CrossRef]
- Takahasi, M. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors. JPN J. Appl. Phys. 2018, 57, 050101. [Google Scholar] [CrossRef]
- Sasaki, T.; Takahasi, M. Real-time structural analysis of InGaAs/InAs/GaAs(1 1 1)A interfaces by in situ synchrotron X-ray reciprocal space mapping. J. Cryst. Growth 2019, 512, 33. [Google Scholar] [CrossRef]
- Reeber, R.R.; Wang, K. Lattice parameters and thermal expansion of GaN. J. Mater. Res. 2000, 15, 40. [Google Scholar] [CrossRef]
- Reeber, R.R.; Wang, K. High Temperature Elastic Constant Prediction of Some Group III-nitrides. MRS Internet J. Nitride Semicond. Res. 2001, 6, 3. [Google Scholar] [CrossRef]
- Wang, K.; Reeber, R.R. Thermal expansion and elastic properties of InN. Appl. Phys. Lett. 2001, 79, 1602. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Kawaguchi, Y.; Shimizu, M.; Sawaki, N.; Zheleva, T.; Davis, R.F.; Tsuda, H.; Taki, W.; Kuwano, N.; Oki, K. The Composition Pulling Effect in MOVPE Grown InGaN on GaN and AlGaN and its TEM Characterization. MRS Internet J. Nitride Semicond. Res. 1997, 2, 6. [Google Scholar] [CrossRef]
- Inatomi, Y.; Kangawa, Y.; Ito, T.; Suski, T.; Kumagai, Y.; Kakimoto, K.; Koukitu, A. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth. JPN J. Appl. Phys. 2017, 56, 078003. [Google Scholar] [CrossRef]
- Dodson, B.; Tsao, J.Y. Relaxation of strained-layer semiconductor structures via plastic flow. Appl. Phys. Lett. 1987, 51, 1325. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, T.; Sasaki, T.; Fujikawa, S.; Takahasi, M.; Araki, T.; Onuma, T.; Honda, T.; Nanishi, Y. In Situ Synchrotron X-ray Diffraction Reciprocal Space Mapping Measurements in the RF-MBE Growth of GaInN on GaN and InN. Crystals 2019, 9, 631. https://doi.org/10.3390/cryst9120631
Yamaguchi T, Sasaki T, Fujikawa S, Takahasi M, Araki T, Onuma T, Honda T, Nanishi Y. In Situ Synchrotron X-ray Diffraction Reciprocal Space Mapping Measurements in the RF-MBE Growth of GaInN on GaN and InN. Crystals. 2019; 9(12):631. https://doi.org/10.3390/cryst9120631
Chicago/Turabian StyleYamaguchi, Tomohiro, Takuo Sasaki, Seiji Fujikawa, Masamitu Takahasi, Tsutomu Araki, Takeyoshi Onuma, Tohru Honda, and Yasushi Nanishi. 2019. "In Situ Synchrotron X-ray Diffraction Reciprocal Space Mapping Measurements in the RF-MBE Growth of GaInN on GaN and InN" Crystals 9, no. 12: 631. https://doi.org/10.3390/cryst9120631
APA StyleYamaguchi, T., Sasaki, T., Fujikawa, S., Takahasi, M., Araki, T., Onuma, T., Honda, T., & Nanishi, Y. (2019). In Situ Synchrotron X-ray Diffraction Reciprocal Space Mapping Measurements in the RF-MBE Growth of GaInN on GaN and InN. Crystals, 9(12), 631. https://doi.org/10.3390/cryst9120631