Identification of Unentangled–Entangled Border in the Luttinger Liquid Phase
Abstract
:1. Introduction
2. Pairwise Reduced Density Matrix
3. Quantum Discord
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NN | Nearest Neighbour |
2N | 2nd Neighbour |
3N | 3rd Neighbour |
4N | 4th Neighbour |
QD | Quantum Discord |
EF | Entanglement of Formation |
LL | Luttinger Liquid |
References
- Wootters, W.K. Entanglement of formation of an arbitrary state of two Qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Bennett, C.H.; DiVincenzo, D.P. Quantum information and computation. Nature 2000, 404, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Amico, L.; Fazio, R.; Osterloh, A.; Vidal, V. Entanglement in many-body Systems. Rev. Mod. Phys. 2008, 80, 517–576. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantum- ness of correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.; Vedral, V. Classical quantum and total correlations. J. Phys. A 2001, 34, 6899. [Google Scholar] [CrossRef]
- Brukner, C.; Zukowski, M.; Zeilinger, A. Quantum communication complexity protocol with two entangled qutrits. Phys. Rev. Lett. 2002, 89, 197901. [Google Scholar] [CrossRef] [PubMed]
- Dakić, B.; Lipp, Y.O.; Ma, X.; Ringbauer, M.; Kropatschek, S.; Barz, S.; Paterek, T.; Vedral, V.; Zeilinger, A.; Brukner, C.; et al. Quantum discord as resource for remote state preparation. Nat. Phys. 2012, 8, 666–670. [Google Scholar] [CrossRef]
- Quan, H.T.; Song, Z.; Liu, X.F.; Zanardi, P.; Sun, C.P. Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 2006, 96, 140604. [Google Scholar] [CrossRef]
- Jafari, R.; Akbari, A. Gapped quantum criticality gains long-time quantum correlations. Europhys. Lett. 2015, 111, 10007. [Google Scholar] [CrossRef]
- Mehran, E.; Mahdavifar, S.; Jafari, R. Induced effects of the dzyaloshinskii- moriya interaction on the thermal entanglement in spin-1/2 Heisenberg chains. Phys. Rev. A 2014, 89, 042306. [Google Scholar] [CrossRef]
- Ghosh, S.; Rosenbaum, T.F.; Aeppli, G.; Coppersmith, S.N. Entangled quantum state of magnetic dipoles. Nature 2003, 425, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Vedral, V. Quantum physics: Entanglement hits the big time. Nature 2003, 425, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Wiesniak, M.; Vedral, V.; Brukner, C. Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 2005, 7, 258. [Google Scholar] [CrossRef]
- Jurcevic, P.; Lanyon, B.P.; Hauke, P.; Hempel, C.; Zoller, P.; Blatt, R.; Roos, C.F. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 2014, 511, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Sahling, S.; Remenyi, G.; Paulsen, C.; Monceau, P.; Saligrama, V.; Marin, C.; Revcolevschi, A.; Regnault, L.; Raymond, S.; Lorenzo, J. Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains. Nat. Phys. 2015, 11, 255–260. [Google Scholar] [CrossRef]
- Loss, D.; DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120. [Google Scholar] [CrossRef]
- Burkard, G.; Loss, D.; DiVincenzo, D.P. Coupled quantum dots as quantum gates. Phys. Rev. B 1999, 59, 2070. [Google Scholar] [CrossRef]
- Glaser, U.; Büttner, H.; Fehske, H. Entanglement and correlation in anisotropic quantum spin systems. Phys. Rev. A 2003, 68, 032318. [Google Scholar] [CrossRef]
- Kastner, M.A.; Birgeneau, R.J.; Shirane, G.; Endoh, Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 1998, 70, 897. [Google Scholar] [CrossRef]
- Hase, M.; Terasaki, I.; Uchinokura, K. Observation of the spin-Peierls transition in linear Cu2+(spin-1/2) chains in an inorganic compound CuGeO3. Phys. Rev. Lett. 1993, 70, 3651. [Google Scholar] [CrossRef]
- Gibson, B.J.; Kremer, R.K.; Prokofiev, A.V.; Assmus, W.; McIntyre, G.J. Incommensurate antiferromagnetic order in the S=1/2 quantum chain compound LiCuVO4. Phys. B 2004, 350, 253–256. [Google Scholar] [CrossRef]
- Algra, H.A.; Bartolome, J.; Dejongh, L.J.; Carlin, R.L.; Reedijk, J. Field-induced magnetic ordering in the S = 1 singlet ground-state system Ni(C5H5NO)6(ClO4)2 studied by specific heat. Phys. B+C 1978, 93, 35–46. [Google Scholar] [CrossRef]
- Blote, H.W.J. The specific heat of magnetic linear chains. Phys. B+C 1975, 79, 427–466. [Google Scholar] [CrossRef]
- Kwek, L.C.; Takahashi, Y.; Choo, K.W. Spin chain under next nearest neighbor interaction. J. Phys. Conf. Ser. 2009, 143, 012014. [Google Scholar] [CrossRef]
- Imamog, A.; Awschalom, D.D.; Burkard, G.; DiVincenzo, D.P.; Loss, D.; Sherwin, M.; Small, A. Quantum information processing using dot spins and cavity QED. Phys. Rev. Lett. 1999, 83, 4204. [Google Scholar] [CrossRef]
- Raussendorf, R.; Briegel, H.J. A one-way quantum computer. Phys. Rev. Lett. 2001, 86, 5188. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 2001, 64, 012313. [Google Scholar] [CrossRef]
- Fumani, F.K.; Nemati, S.; Mahdavifar, S.; Darooneh, A. Magnetic entanglement in spin-1/2 xy chains. Phys. A 2016, 445, 256–263. [Google Scholar] [CrossRef]
- Gong, S.S.; Su, G. Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 2009, 80, 012323. [Google Scholar] [CrossRef]
- Huang, Y. Scaling of quantum discord in spin models. Phys. Rev. B 2014, 89, 054410. [Google Scholar] [CrossRef]
- Yano, H.; Nishimori, H. Ground state entanglement in spin systems. Prog. Theor. Phys. Suppl. 2005, 157, 164–167. [Google Scholar] [CrossRef]
- Osborne, T.J.; Nielsen, M.A. Entanglement in a simple quantum phase transition. Phys. Rev. A 2002, 66, 032110. [Google Scholar] [CrossRef]
- Maziero, J.; Guzman, H.C.; Celeri, L.C.; Sarandy, M.S.; Serra, R.M. Quantum and classical thermal correlations in the xy spin-1/2 chain. Phys. Rev. A 2010, 82, 012106. [Google Scholar] [CrossRef]
- Mzaouali, Z.; El Baz, M. Long range quantum coherence, quantum and classical correlations in Heisenberg XX chain. Phys. A 2019, 518, 119–130. [Google Scholar] [CrossRef]
- Fortes, R.; Rigolin, G. Probabilistic quantum teleportation via thermal entanglement. Phy. Rev. A 2017, 96, 022315. [Google Scholar] [CrossRef]
- Jordan, P.; Wigner, E. About the Pauli exclusion principle. Z. Phys. 1928, 47, 631–651. [Google Scholar] [CrossRef]
- Groisman, B.; Popescu, S.; Winter, A. Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 2005, 72, 032317. [Google Scholar] [CrossRef]
- Sarandy, M.S. Classical correlation and quantum discord in critical systems. Phys. Rev. A 2009, 80, 022108. [Google Scholar] [CrossRef]
NN | 2N | 3N | 4N | |
---|---|---|---|---|
QD | 0.47 | 0.45 | 0.43 | 0.40 |
EF | 0.82 | 0.75 | 0.67 | 0.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemati, S.; Khastehdel Fumani, F.; Mahdavifar, S. Identification of Unentangled–Entangled Border in the Luttinger Liquid Phase. Crystals 2019, 9, 105. https://doi.org/10.3390/cryst9020105
Nemati S, Khastehdel Fumani F, Mahdavifar S. Identification of Unentangled–Entangled Border in the Luttinger Liquid Phase. Crystals. 2019; 9(2):105. https://doi.org/10.3390/cryst9020105
Chicago/Turabian StyleNemati, Somayyeh, Fatemeh Khastehdel Fumani, and Saeed Mahdavifar. 2019. "Identification of Unentangled–Entangled Border in the Luttinger Liquid Phase" Crystals 9, no. 2: 105. https://doi.org/10.3390/cryst9020105
APA StyleNemati, S., Khastehdel Fumani, F., & Mahdavifar, S. (2019). Identification of Unentangled–Entangled Border in the Luttinger Liquid Phase. Crystals, 9(2), 105. https://doi.org/10.3390/cryst9020105