Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Molenda, J.; Kupecki, J.; Baron, R.; Blesznowski, M.; Brus, G.; Brylewski, T.; Bucko, M.; Chmielowiec, J.; Cwieka, K.; Gazda, M.; et al. Status report on high temperature fuel cells in Poland—Recent advances and achievements. Int. J. Hydrogen Energy 2017, 42, 4366–4403. [Google Scholar] [CrossRef]
- Gdula-Kasica, K.; Mielewczyk-Gryn, A.; Molin, S.; Jasinski, P.; Krupa, A.; Kusz, B.; Gazda, M. Optimization of microstructure and properties of acceptor-doped barium cerate. Solid State Ionics 2012, 225, 245–249. [Google Scholar] [CrossRef]
- Haugsrud, R.; Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 2006, 5, 193–196. [Google Scholar] [CrossRef]
- Animitsa, I.; Iakovleva, A.; Belova, K. Electrical properties and water incorporation in A-site deficient perovskite La1-xBaxNb3O9-0.5x. J. Solid State Chem. 2016, 238, 156–161. [Google Scholar] [CrossRef]
- Hibino, T.; Mizutani, K.; Yajima, T.; Iwahara, H. Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method. Solid State Ionics 1992, 57, 303–306. [Google Scholar] [CrossRef]
- Escolástico, S.; Vert, V.B.; Serra, J.M. Preparation and characterization of nanocrystalline mixed proton-electronic conducting materials based on the system Ln6WO12. Chem. Mater. 2009, 21, 3079–3089. [Google Scholar] [CrossRef]
- Yajima, T.; Kazeoka, H.; Yogo, T.; Iwahara, H. Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics 1991, 47, 271–275. [Google Scholar] [CrossRef]
- Sakai, T.; Isa, K.; Matsuka, M.; Kozai, T.; Okuyama, Y.; Ishihara, T.; Matsumoto, H. Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte. Int. J. Hydrogen Energy 2013, 38, 6842–6847. [Google Scholar] [CrossRef]
- Haugsrud, R.; Ballesteros, B.; Lira-Cantu, M.; Norby, T. Ionic and electronic conductivity of 5% Ca-doped GdNbO4. J. Electrochem. Soc. 2006, 153, J87–J90. [Google Scholar] [CrossRef]
- Bayliss, R.D.; Pramana, S.S.; An, T.; Wei, F.; Kloc, C.L.; White, A.J.P.; Skinner, S.J.; White, T.J.; Baikie, T. Fergusonite-type CeNbO4+δ: Single crystal growth, symmetry revision and conductivity. J. Solid State Chem. 2013, 204, 291–297. [Google Scholar] [CrossRef]
- Li, C.; Bayliss, R.D.; Skinner, S.J. Crystal structure and potential interstitial oxide ion conductivity of LnNbO4 and LnNb0.92W0.08O4.04 (Ln = La, Pr, Nd). Solid State Ionics 2014, 262, 530–535. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Zhou, H.; Huang, D.; Wu, Y.; Zhou, G.; Hu, J.; Zhan, J. Luminescence, energy transfer, and up-conversion mechanisms of Yb3+and Tb3+co-doped LaNbO4. J. Alloys Compd. 2017, 702, 209–215. [Google Scholar] [CrossRef]
- Haugsrud, R.; Norby, T. High-temperature proton conductivity in acceptor-doped LaNbO4. Solid State Ionics 2006, 177, 1129–1135. [Google Scholar] [CrossRef]
- Hakimova, L.; Kasyanova, A.; Farlenkov, A.; Lyagaeva, J.; Medvedev, D.; Demin, A.; Tsiakaras, P. Effect of isovalent substitution of La3+ in Ca-doped LaNbO4 on the thermal and electrical properties. Ceram. Int. 2019, 45, 209–215. [Google Scholar] [CrossRef]
- Mielewczyk-Gryn, A.; Wachowski, S.; Zagórski, K.; Jasiński, P.; Gazda, M. Characterization of magnesium doped lanthanum orthoniobate synthesized by molten salt route. Ceram. Int. 2015, 41, 7847–7852. [Google Scholar] [CrossRef]
- Mielewczyk-Gryn, A.; Gdula, K.; Lendze, T.; Kusz, B.; Gazda, M. Nano- and microcrystals of doped niobates. Cryst. Res. Technol. 2010, 45, 1225–1228. [Google Scholar] [CrossRef]
- Fjeld, H.; Kepaptsoglou, D.M.; Haugsrud, R.; Norby, T. Charge carriers in grain boundaries of 0.5% Sr-doped LaNbO4. Solid State Ionics 2010, 181, 104–109. [Google Scholar] [CrossRef]
- Mokkelbost, T.; Lein, H.L.; Vullum, P.E.; Holmestad, R.; Grande, T.; Einarsrud, M.-A. Thermal and mechanical properties of LaNbO4-based ceramics. Ceram. Int. 2009, 35, 2877–2883. [Google Scholar] [CrossRef]
- Nguyen, D.; Kim, Y.H.; Lee, J.S.; Fisher, J.G. Structure, morphology, and electrical properties of proton conducting La0.99Sr0.01NbO4-δ synthesized by a modified solid state reaction method. Mater. Chem. Phys. 2017, 202, 320–328. [Google Scholar] [CrossRef]
- Brandão, A.D.; Antunes, I.; Frade, J.R.; Torre, J.; Kharton, V.V.; Fagg, D.P. Enhanced Low-Temperature Proton Conduction in Sr0.02La0.98NbO4−δ by Scheelite Phase Retention. Chem. Mater. 2010, 22, 6673–6683. [Google Scholar] [CrossRef]
- Wachowski, S.; Mielewczyk-Gryn, A.; Gazda, M. Effect of isovalent substitution on microstructure and phase transition of LaNb1−xMxO4 (M = Sb, V or ta; x = 0.05 to 0.3). J. Solid State Chem. 2014, 219, 201–209. [Google Scholar] [CrossRef]
- Brandão, A.D.; Nasani, N.; Yaremchenko, A.A.; Kovalevsky, A.V.; Fagg, D.P. Solid solution limits and electrical properties of scheelite SryLa1-yNb1-xVxO4-δ materials for x = 0.25 and 0.30 as potential proton conducting ceramic electrolytes. Int. J. Hydrogen Energy 2018, 43, 18682–18690. [Google Scholar] [CrossRef]
- Wachowski, S.; Mielewczyk-Gryn, A.; Zagorski, K.; Li, C.; Jasinski, P.; Skinner, S.J.; Haugsrud, R.; Gazda, M. Influence of Sb-substitution on ionic transport in lanthanum orthoniobates. J. Mater. Chem. A 2016, 4, 11696–11707. [Google Scholar] [CrossRef]
- Mielewczyk-Gryn, A.; Wachowski, S.; Strychalska, J.; Zagórski, K.; Klimczuk, T.; Navrotsky, A.; Gazda, M. Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates. Ceram. Int. 2016, 42, 7054–7059. [Google Scholar] [CrossRef]
- Mielewczyk-Gryn, A.; Wachowski, S.; Lilova, K.I.; Guo, X.; Gazda, M.; Navrotsky, A. Influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate. Ceram. Int. 2015, 41, 2128–2133. [Google Scholar] [CrossRef]
- Wachowski, S.; Kamecki, B.; Winiarz, P.; Dzierzgowski, K.; Mielewczyk-Gryń, A.; Gazda, M. Tailoring structural properties of lanthanum orthoniobates through an isovalent substitution on the Nb-site. Inorg. Chem. Front. 2018, 5, 2157–2166. [Google Scholar] [CrossRef]
- Li, M.; Wu, R.; Zhu, L.; Cheng, J.; Hong, T.; Xu, C. Enhanced sinterability and conductivity of cobalt doped lanthanum niobate as electrolyte for proton-conducting solid oxide fuel cell. Ceram. Int. 2019, 45, 573–578. [Google Scholar] [CrossRef]
- Dzierzgowski, K.; Wachowski, S.; Gojtowska, W.; Lewandowska, I.; Jasiński, P.; Gazda, M.; Mielewczyk-Gryń, A. Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties. Ceram. Int. 2018, 44, 8210–8215. [Google Scholar] [CrossRef]
- Packer, R.J.; Skinner, S.J.; Yaremchenko, A.A.; Tsipis, E.V.; Kharton, V.V.; Patrakeev, M.V.; Bakhteeva, Y.A. Lanthanum substituted CeNbO4+δ scheelites: Mixed conductivity and structure at elevated temperatures. J. Mater. Chem. 2006, 16, 3503. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Developments for the Program FULLPROF; Commission on Powder Diffraction: Perth, Australia, 2001; Volume 26, ISBN 4971168915. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Stubičan, V.S. High-Temperature Transitions in Rare Earth Niobates and TantaIates. J. Am. Ceram. Soc. 1964, 47, 55–58. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Babilo, P.; Haile, S.M. Defect chemistry of yttrium-doped barium zirconate: A thermodynamic analysis of water uptake. Chem. Mater. 2008, 20, 6352–6357. [Google Scholar] [CrossRef]
- Mielewczyk-Gryń, A. Water uptake analysis of the acceptor-doped lanthanum orthoniobates. J. Therm. Anal. Calorim. 2019. submitted. [Google Scholar]
- Huse, M.; Norby, T.; Haugsrud, R. Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4. Int. J. Hydrogen Energy 2012, 37, 8004–8016. [Google Scholar] [CrossRef]
- Abrantes, J.C.C.; Labrincha, J.A.; Frade, J.R. Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. J. Eur. Ceram. Soc. 2000, 20, 1603–1609. [Google Scholar] [CrossRef]
- Haile, S.M.; West, D.L.; Campbell, J. The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. J. Mater. Res. 1998, 13, 1576–1595. [Google Scholar] [CrossRef]
- Berger, P.; Mauvy, F.; Grenier, J.-C.; Sata, N.; Magrasó, A.; Haugsrud, R.; Slater, P.R. Proton-Conducting Ceramics: From Fundamentals to Applied Research; Marrony, M., Ed.; Pan Stanford Publishing: Singapore, 2016; Chapter 1; pp. 1–72. [Google Scholar]
- Mather, G.C.; Fisher, C.A.J.; Islam, M.S. Defects, dopants, and protons in LaNbO4. Chem. Mater. 2010, 22, 5912–5917. [Google Scholar] [CrossRef]
- Packer, R.J.; Tsipis, E.V.; Munnings, C.N.; Kharton, V.V.; Skinner, S.J.; Frade, J.R. Diffusion and conductivity properties of cerium niobate. Solid State Ionics 2006, 177, 2059–2064. [Google Scholar] [CrossRef]
- Wang, D.Y.; Park, D.S.; Griffith, J.; Nowick, A.S. Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 1981, 2, 95–105. [Google Scholar] [CrossRef]
- Guo, X.; Waser, R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog. Mater. Sci. 2006, 51, 151–210. [Google Scholar] [CrossRef]
- Kilner, J.A.; Brook, R.J. A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 1982, 6, 237–252. [Google Scholar] [CrossRef]
- Norby, T.; Larring, Y. Concentration and transport of protons in oxides. Curr. Opin. Solid State Mater. Sci. 1997, 2, 593–599. [Google Scholar] [CrossRef]
- Islam, M.S.; Davies, R.A.; Fisher, C.A.J.; Chadwick, A.V. Defects and protons in the CaZrO3 perovskite and Ba2In2O5 brownmillerite: Computer modelling and EXAFS studies. Solid State Ionics 2001, 145, 333–338. [Google Scholar] [CrossRef]
- Toyoura, K.; Sakakibara, Y.; Yokoi, T.; Nakamura, A.; Matsunaga, K. Oxide-ion conduction: Via interstitials in scheelite-type LaNbO4: A first-principles study. J. Mater. Chem. A 2018, 6, 12004–12011. [Google Scholar] [CrossRef]
Sample | β (°) | ρt (g/cm3) | ρm (g/cm3) | ρrel (%) | ||||
---|---|---|---|---|---|---|---|---|
LaNbO4−δ | 5.5659 | 11.5245 | 5.2031 | 94.082 | 332.90 | 5.906 | 5.903 | 99.9 |
La0.95Tb0.05NbO4+δ | 5.5509 | 11.4902 | 5.1954 | 94.091 | 330.52 | 5.963 | 5.214 | 87.5 |
La0.9Tb0.1NbO4+δ | 5.5499 | 11.4934 | 5.1961 | 94.087 | 330.61 | 5.981 | 5.959 | 99.6 |
La0.85Tb0.15NbO4+δ | 5.5532 | 11.4979 | 5.1969 | 94.092 | 330.97 | 5.995 | 5.259 | 87.7 |
La0.8Tb0.2NbO4+δ | 5.5367 | 11.4648 | 5.1905 | 94.103 | 328.63 | 6.058 | 5.536 | 91.4 |
La0.7Tb0.3NbO4+δ | 5.5202 | 11.4311 | 5.1812 | 94.103 | 326.11 | 6.145 | 5.525 | 89.9 |
EA Below 500 °C | EA Above 500 °C | ||||||
---|---|---|---|---|---|---|---|
(10−5 S/cm) | (%) | (eV) | (eV) | ||||
Wet Air | Dry Air | Wet Air | Dry Air | Wet Air | Dry Air | ||
LaNbO4−δ | 0.68 | 0.13 | 419 | n/d | n/d | n/d | n/d |
La0.95Tb0.05NbO4+δ | 3.68 | 2.46 | 49 | 1.02 ± 0.02 | 1.29 ± 0.02 | 0.56 ± 0.02 | 0.68 ± 0.02 |
La0.9Tb0.1NbO4+δ | 9.51 | 5.04 | 89 | 1.25 ± 0.02 | 1.25 ± 0.02 | 0.55 ± 0.02 | 0.68 ± 0.02 |
La0.85Tb0.15NbO4+δ | 11.3 | 5.45 | 107 | 1.16 ± 0.02 | 1.24 ± 0.02 | 0.53 ± 0.02 | 0.86 ± 0.02 |
La0.8Tb0.2NbO4+δ | 3.95 | 2.05 | 93 | 1.26 ± 0.02 | 1.11 ± 0.02 | 0.59 ± 0.02 | 0.74 ± 0.02 |
La0.7Tb0.3NbO4+δ | 3.11 | 1.83 | 70 | 1.07 ± 0.03 | 1.15 ± 0.02 | 0.69 ± 0.05 | 0.85 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzierzgowski, K.; Wachowski, S.; Gazda, M.; Mielewczyk-Gryń, A. Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties. Crystals 2019, 9, 91. https://doi.org/10.3390/cryst9020091
Dzierzgowski K, Wachowski S, Gazda M, Mielewczyk-Gryń A. Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties. Crystals. 2019; 9(2):91. https://doi.org/10.3390/cryst9020091
Chicago/Turabian StyleDzierzgowski, Kacper, Sebastian Wachowski, Maria Gazda, and Aleksandra Mielewczyk-Gryń. 2019. "Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties" Crystals 9, no. 2: 91. https://doi.org/10.3390/cryst9020091
APA StyleDzierzgowski, K., Wachowski, S., Gazda, M., & Mielewczyk-Gryń, A. (2019). Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties. Crystals, 9(2), 91. https://doi.org/10.3390/cryst9020091