Laser Performance of Neodymium- and Erbium-Doped GYSGG Crystals
Abstract
:1. Introduction
2. Laser Performance of Nd3+-Doped GYSGG
2.1. Nd:GYSGG Laser Operating in the 1.05–1.11 μm Range
2.2. Nd:GYSGG Laser Operating in the 1.3–1.45 μm Range
2.3. Nd:GYSGG Laser Operating in the 0.9–0.95 μm Range
2.4. Nd:GYSGG Laser Performance: Summary
3. Laser Performance of Er3+-Doped GYSGG
3.1. Mid-Infrared Laser Performance of Er:GYSGG at 2.79 μm
3.2. Laser Performance of Er,Pr:GYSGG Using Cr3+ as the Deactivator
3.3. Laser Performance of Cr,Er,Pr:GYSGG with a Wide Absorption Band for Lamp Pumping
3.4. Laser Performance of Yb,Er,Ho:GYSGG Using Yb3+ and Ho3+ as Sensitizer and Deactivator
3.5. Mid-Infrared Laser Performance of Cr,Yb,Ho,Pr: GYSGG
3.6. Mid-Infrared Laser Performance of Er3+-Doped GYSGG: Summary
4. Nonlinear Optical Wavelength Extension Based on Nd:GYSGG and Er:GYSGG Lasers
5. Conclusions
Funding
Conflicts of Interest
References
- Kane, T.J.; Byer, R.L. Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt. Lett. 1985, 10, 65–67. [Google Scholar] [CrossRef]
- Pfistner, C.; Albers, P.; Weber, H.P.; Ostroumov, V.G.; Zharikov, E.V.; Shcherbakov, I.A.; Lutts, G.B.; Zagumenny, A.I. Spectroscopic and laser characteristics of new YSGG, GSGG, GSAG mixtures doped with Nd3+. Opt. Mater. 1992, 1, 101–110. [Google Scholar] [CrossRef]
- Qin, L.J.; Tang, D.Y.; Xie, G.Q.; Dong, C.M.; Jia, Z.T.; Tao, X.T. High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal. Laser Phys. Lett. 2008, 5, 100–103. [Google Scholar] [CrossRef]
- Koechner, W. Solid-state Laser Engineering, 6th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Luo, J.Q. Study on the Growth and Properties of New-Type Antiradiation Nd:GYSGG Crystal and Up-Conversion Performance of Er,Yb:GSGG and Er:GSGG. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2009. [Google Scholar]
- Ding, S.; Zhang, Q.; Luo, J.; Liu, W.; Sun, D.; Wang, X.; Sun, G.; Gao, J. Basic Properties of Nd-Doped GYSGG Laser Crystal. Cryst. Res. Technol. 2017, 52, 1700132. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Q.; Sun, D.; Luo, J.; Liu, W.; Yin, S. Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal. Opt. Commun. 2012, 285, 4420–4426. [Google Scholar] [CrossRef]
- Chen, J.; Sun, D.; Luo, J.; Xiao, J.; Dou, R.; Zhang, Q. Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation. Opt. Commun. 2013, 301–302, 84–87. [Google Scholar] [CrossRef]
- Chen, J.; Sun, D.; Luo, J.; Zhang, H.; Dou, R.; Xiao, J.; Zhang, Q.; Yin, S. Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal. Opt. Express 2013, 21, 23425–23432. [Google Scholar] [CrossRef]
- Luo, J.; Sun, D.; Zhang, H.; Guo, Q.; Fang, Z.; Zhao, X.; Cheng, M.; Zhang, Q.; Yin, S. Growth, spectroscopy, and laser performance of a 2.79 μm Cr,Er,Pr:GYSGG radiation-resistant crystal. Opt. Lett. 2015, 40, 4194–4197. [Google Scholar] [CrossRef]
- Chen, J.; Sun, D.; Luo, J.; Xiao, J.; Kang, H.; Zhang, H.; Cheng, M.; Zhang, Q.; Yin, S. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb,Er,Ho:GYSGG crystals. Opt. Lett. 2013, 38, 1218–1220. [Google Scholar] [CrossRef] [PubMed]
- Krupke, W.F.; Shinn, M.D.; Marion, J.E.; Caird, J.A.; Stokowski, S.E. Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet. J. Opt. Soc. Am. B 1986, 3, 102–114. [Google Scholar] [CrossRef]
- Rapaport, A.; Zhao, S.; Xiao, G.; Howard, A.; Bass, M. Temperature dependence of the 1.06-μm stimulated emission cross section of neodymium in YAG and in GSGG. Appl. Opt. 2002, 41, 7052–7057. [Google Scholar] [CrossRef]
- Sun, C.L.; Zhong, K.; Zhang, C.G.; Yao, J.Q.; Xu, D.G.; Zhang, F.; Pei, Y.Q.; Zhang, Q.L.; Luo, J.Q.; Sun, D.L.; Yin, S.T. Stimulated emission cross section of the 4F3/2→4I11/2 transition of Nd:GYSGG. Laser Phys. Lett. 2012, 9, 410–414. [Google Scholar] [CrossRef]
- Zhong, K.; Yao, J.; Sun, C.; Zhang, C.; Miao, Y.; Wang, R.; Xu, D.; Zhang, F.; Zhang, Q.; Sun, D.; Yin, S. Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser. Opt. Lett. 2011, 36, 3813–3815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, J.; Wang, G.; He, J.; Wang, W.; Zhang, Q.; Sun, D.; Luo, J.; Yin, S. Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal. Opt. Commun. 2011, 284, 5734–5737. [Google Scholar] [CrossRef]
- Song, Q.; Wang, G.; Zhang, B.; Wang, W.; Wang, M.; Zhang, Q.; Sun, G.; Bo, Y.; Peng, Q. Diode-pumped passively dual-wavelength Q-switched Nd:GYSGG laser using graphene oxide as the saturable absorber. Appl. Opt. 2015, 54, 2688–2692. [Google Scholar] [CrossRef]
- Gao, Y.J.; Zhang, B.Y.; Song, Q.; Wang, G.J.; Wang, W.J.; Hong, M.H.; Dou, R.Q.; Sun, D.L.; Zhang, Q.L. Dual-wavelength passively Q-switched Nd:GYSGG laser by tungsten disulfide saturable absorber. Appl. Opt. 2016, 55, 4929–4932. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhang, B.Y.; Wang, G.J. Characterization of SnSe2 saturable absorber by THz-TDS and used in dual-wavelength passively Q-switched laser. Optik 2018, 174, 35–39. [Google Scholar] [CrossRef]
- Ma, B.; Li, P.; Chen, X.; Wang, L.; Liu, B.; Song, T. Gold nano-triangles as saturable absorbers for a dual-wavelength passively Q-switched Nd:GYSGG laser. Laser Phys. 2018, 28, 075802. [Google Scholar] [CrossRef]
- Song, Q.; Wu, Z.; Ma, P.; Wang, G.; Zhang, B. TiS2, MoS2, WS2/Sb2Te3 mixed nanosheets saturable absorber for dual-wavelength passively Q-switched Nd:GYSGG Laser. Infrared Phys. Technol. 2018, 92, 1–5. [Google Scholar] [CrossRef]
- Song, Q.; Wang, G.; Zhang, B.; Zhang, Q.; Wang, W.; Wang, M.; Sun, G.; Bo, Y.; Peng, Q. Dual-wavelength self-Q-switched Nd:GYSGG laser. J. Mod. Opt. 2015, 62, 1655–1659. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Xu, J.L.; Wang, G.J.; He, J.L.; Wang, W.J.; Zhang, Q.L.; Sun, D.L.; Luo, J.Q.; Yin, S.T. Diode-pumped passively mode-locked Nd:GYSGG laser. Laser Phys. Lett. 2011, 8, 787–790. [Google Scholar] [CrossRef]
- Song, Q.; Wang, G.; Zhang, B.; Zhang, Q.; Wang, W.; Wang, M.; Sun, G.; Bo, Y.; Peng, Q. Passively Q-switched mode-locked dual-wavelength Nd:GYSGG laser using graphene oxide saturable absorber. Opt. Commun. 2015, 347, 64–67. [Google Scholar] [CrossRef]
- Zhong, K.; Sun, C.; Yao, J.; Xu, D.; Xie, X.; Cao, X.; Zhang, Q.; Luo, J.; Sun, D.; Yin, S. Efficient continuous-wave 1053-nm Nd:GYSGG laser with passively Q-switched dual-wavelength operation for terahertz generation. IEEE J. Quantum Electron. 2013, 49, 375–379. [Google Scholar] [CrossRef]
- Shen, B.J.; Kang, H.X.; Zhang, C.G.; Zhang, Q.L.; Sun, D.L.; Yin, S.T.; Luo, J.Q.; Chen, P.; Gao, R.L.; Liang, J.; Gao, H.J. A diode-end-pumped Nd:GYSGG continuous wave laser at 1104 nm. Laser Phys. 2013, 23, 035805. [Google Scholar] [CrossRef]
- Lin, H.; Liu, H.; Huang, X.; Copner, N.; Sun, D. Continuous-wave Nd:GYSGG laser at 1.1 μm. J. Mod. Opt. 2018, 65, 423–426. [Google Scholar] [CrossRef]
- Wagner, W.G.; Lengyel, B.A. Evolution of the giant pulse in a laser. J. Appl. Phys. 1963, 34, 2040–2046. [Google Scholar] [CrossRef]
- Degnan, J.J. Theory of the optimally coupled Q-switched laser. IEEE J. Quantum Electron. 1989, 25, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Dun, Y.; Feng, C.; Chen, X.; Li, P.; Wang, Q.; Song, T. Gold nanorods based passively Q-switched solid-state laser at 1111.4 nm wavelength. Optik 2017, 147, 360–365. [Google Scholar] [CrossRef]
- Zhong, K.; Sun, C.L.; Yao, J.Q.; Xu, D.G.; Pei, Y.Q.; Zhang, Q.L.; Luo, J.Q.; Sun, D.L.; Yin, S.T. Continuous-wave Nd:GYSGG laser around 1.3 μm. Laser Phys. Lett. 2012, 9, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Zhong, K.; Xu, W.Z.; Sun, C.L.; Yao, J.Q.; Xu, D.G.; Cao, X.L.; Zhang, Q.L.; Luo, J.Q.; Sun, D.L.; Yin, S.T. Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 μm regions based on 4F3/2 to 4I13/2 transition. J. Phys. D Appl. Phys. 2013, 46, 315106. [Google Scholar] [CrossRef]
- Song, T.; Li, P.; Chen, X.; Ma, B.; Dun, Y. Passively Q-switched Nd:GYSGG laser operating at 1.3 μm with V:YAG as saturable absorber. Optik 2016, 127, 10621–10625. [Google Scholar] [CrossRef]
- Lin, H.Y.; Sun, D.; Copner, N.; Zhu, W.Z. Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal. Opt. Mater. 2017, 69, 250–253. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.M.; Zhang, F.F.; Wang, M.Q.; Li, J.J.; Mao, Y.L.; Yuan, L.; Zong, N.; Zhang, S.J.; Yang, F.; Bo, Y.; Gao, C.Q.; Cui, D.F.; Peng, Q.J.; Xu, Z.Y. Sub-pm linewidth nanosecond Nd:GYSGG laser at 1336.6 nm. Opt. Lett. 2015, 40, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhong, K.; Yao, J.; Xu, D.; Cao, X.; Zhang, Q.; Luo, J.; Sun, D.; Yin, S. Diode-pumped continuous-wave quasi-three-level Nd:GYSGG laser at 937 nm. Opt. Commun. 2013, 294, 229–232. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, T.L.; Li, E.; Ding, X.; Cai, Z.; Zhang, B.; Wen, W.; Wang, P.; Yao, J. 8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm. Opt. Express 2005, 13, 10115–10119. [Google Scholar] [CrossRef]
- Chi, H.; Baumgarten, C.M.; Jankowska, E.; Dehne, K.A.; Murray, G.; Meadows, A.R.; Berrill, M.; Reagan, B.A.; Rocca, J.J. Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb:YAG active mirror laser amplifier. J. Opt. Soc. Am. B 2019, 36, 1084–1090. [Google Scholar] [CrossRef]
- Ganija, M.; Hemming, A.; Simakov, N.; Boyd, K.; Haub, J.; Veitch, P.; Munch, J. High power cryogenic Ho:YAG laser. Opt. Express 2017, 25, 31889–31895. [Google Scholar] [CrossRef]
- Cho, C.Y.; Lee, C.Y.; Chang, C.C.; Tuan, P.H.; Huang, K.F.; Chen, Y.F. 24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%. Opt. Express 2015, 23, 10126–10131. [Google Scholar] [CrossRef]
- Cho, C.Y.; Huang, T.L.; Cheng, H.P.; Huang, K.F.; Chen, Y.F. Exploring the power scaling of the cryogenic 946 nm monolithic laser. Laser Phys. Lett. 2018, 15, 085801. [Google Scholar] [CrossRef]
- Zhong, K.; Liu, C.; Liu, Y.; Mei, J.; Shi, J.; Xu, D.; Yao, J. Power-ratio tunable dual-band Nd:GYSGG laser at 0.94 μm and 1.06 μm. Laser Phys. 2017, 27, 125804. [Google Scholar] [CrossRef]
- Yao, J.Q.; Xu, D.G. All Solid State Laser and Nonlinear Optical Frequency Conversion Technology; Science Press: Beijing, China, 2007. [Google Scholar]
- Wang, Y.G.; Ma, X.Y.; Li, C.Y.; Zhang, Z.G.; Zhang, B.Y.; Zhang, Z.G. A passively mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror grown by metal organic chemical vapour deposition. Chin. Phys. Lett. 2003, 20, 1960–1962. [Google Scholar]
- Li, T.; Zhao, S.; Zhuo, Z.; Wang, Y. Thermal effects investigation and cavity design in passively mode-locked Nd:YVO4 laser with a SESAM. Opt. Commun. 2009, 282, 940–943. [Google Scholar] [CrossRef]
- Zhang, B.; Li, G.; Chen, M.; Zhang, Z.; Wang, Y. Passive mode locking of a diode-end-pumped Nd:GdVO4 laser with a semiconductor saturable absorber mirror. Opt. Lett. 2003, 28, 1829–1831. [Google Scholar] [CrossRef]
- Chen, J.; Sun, D.; Luo, J.; Zhang, H.; Cao, S.; Xiao, J.; Kang, H.; Zhang, Q.; Yin, S. Performances of a diode end-pumped GYSGG/Er,Pr:GYSGG composite laser crystal operated at 2.79 μm. Opt. Express 2014, 22, 23795–23800. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, D.; Luo, J.; Zhang, H.; Fang, Z.; Quan, C.; Hu, L.; Cheng, M.; Zhang, Q.; Yin, S. Laser performance of a 966 nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79 μm. Opt. Lett. 2018, 43, 4312–4315. [Google Scholar] [CrossRef]
- Fang, Z.; Sun, D.; Luo, J.; Zhang, H.; Zhao, X.; Quan, C.; Hu, L.; Cheng, M.; Zhang, Q.; Yin, S. Thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite laser crystal operated at 2.79 μm. Opt. Express 2017, 25, 21349–21357. [Google Scholar] [CrossRef]
- Rabinovich, W.S.; Bowman, S.R.; Feldman, B.J.; Winings, M.J. Tunable laser pumped 3 μm Ho:YAlO3 laser. IEEE J. Quantum Electron. 1991, 27, 895–897. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, D.; Luo, J.; Peng, F.; Fang, Z.; Zhao, X.; Quan, C.; Cheng, M.; Zhang, Q.; Yin, S. Growth, spectroscopy, and laser performance of a radiation-resistant Cr,Yb,Ho,Pr:GYSGG crystal for 2.84 μm mid-infrared laser. J. Lumin. 2018, 194, 636–640. [Google Scholar] [CrossRef]
- Messner, M.; Heinrich, A.; Hagen, C.; Unterrainer, K. High brightness diode pumped Er:YAG laser system at 2.94 μm with nearly 1kW peak power. Proc. SPIE 2016, 9726, 972602. [Google Scholar]
- Messer, M.; Heinrich, A.; Unterrainer, K. High-energy diode side-pumped Er:LiYF4 laser. Appl. Opt. 2018, 57, 1497–1503. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yang, J.; Wu, X.; Sun, D.; Yin, S.; Jiang, H.; Wang, J.; Xu, C. 2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser. Opt. Lett. 2013, 38, 2150–2152. [Google Scholar] [CrossRef]
- Sanamyan, T. Efficient cryogenic mid-IR and eye-safe Er:YAG laser. J. Opt. Soc. Am. B 2016, 33, D1–D6. [Google Scholar] [CrossRef]
- Zhong, K.; Guo, S.; Wang, M.; Mei, J.; Xu, D.; Yao, J. A non-critically phase matched KTA optical parametric oscillator intracavity pumped by an actively Q-switched Nd:GYSGG laser with dual signal wavelengths. Opt. Commun. 2015, 344, 17–20. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, K.; Mei, J.; Guo, S.; Xu, D.; Yao, J. Simultaneous dual-wavelength eye-safe KTP OPO intracavity pumped by a Nd:GYSGG laser. J. Phys. D Appl. Phys. 2016, 49, 065101. [Google Scholar] [CrossRef]
- Jiang, P.B.; Sheng, Q.; Ding, X.; Sun, B.; Liu, J.; Zhao, C.; Zhang, G.Z.; Yu, X.Y.; Li, B.; Wu, L.; Yao, J.Q. Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping. Opt. Commun. 2017, 383, 6–10. [Google Scholar] [CrossRef]
- Zhong, K.; Shi, W.; Xu, D.; Liu, P.; Wang, Y.; Mei, J.; Yan, C.; Fu, S.; Yao, J. Optically pumped terahertz sources. Sci. China Technol. Sci. 2017, 60, 1801–1818. [Google Scholar] [CrossRef]
Property | Nd:YAG | Nd:GYSGG |
---|---|---|
Effective segregation coefficient of Nd3+ | 0.1–0.2 | 0.598 |
Mohs hardness | 8.5 | 6.55 |
Density (g/cm3) | 4.56 | 5.62 |
Thermal conductivity (Wcm−1K−1) | 14 | 4.33 |
Refractive index at 1.0 μm | 1.82 | 1.96 |
Absorption bandwidth around 808 nm (nm) | 2–3 | 7 |
Absorption coefficient around 808 nm (cm−1) | 3–8 | 4.9 |
Fluorescence lifetime (μs) | 230 | 221 |
Emission linewidth (nm) around 1.06 μm | 0.45 | 4.95 |
Stimulated emission cross-section for 4F3/2→4I11/2 transition (10−19 cm2) | 2.8 | 1.5 |
Wavelength (nm) | Operation Mode | Pumping Scheme | Power/Energy | Efficiency | M2 Factor |
---|---|---|---|---|---|
937 [36] | CW | End | 0.8 W | 9.8% | — |
1053 [25] | CW | End | 4.17 W | 33.9% | 13 |
1053/1058 [25] | Q-switched | End | 0.74 W/172 μJ | 16.1% | — |
1058/1061 [15] | CW | End | 10.1 W | 54.7% | 2.8 |
1058/1061 [15] | Q-switched | End | 2.77 W/277 μJ | 24.3% | — |
1061 [23] | Mode-locked | End | 1.27 W | 17.2% | — |
1104 [26] | CW | End | 4.7 W | 24.6% | — |
1110 [27] | CW | End | 1.56 W | 14.1% | — |
1321/1336 [32] | CW | End | 1.998 W | 12.9% | 1.2 |
1336 [32] | CW | End | 2.5 W | 18.5% | — |
1336 [35] | Q-switched | Side | 356 mJ | 8.6% | 1.4 |
1424 [32] | CW | End | 0.707 W | 6.8% | — |
Property | Nd:YAG | Nd:YVO4 | Nd:GdVO4 | Nd:GYSGG |
---|---|---|---|---|
Emission linewidth (nm) | 0.45 [4] | 0.8 [43] | 1.25 [43] | 4.95 [6] |
Mode-locked pulse duration (ps) | 10 [44] | 9.3 [45] | 8 [46] | 3.1 [23] |
Crystal | Wavelength (μm) | Pumping Scheme | Power/Energy | Efficiency | M2 Factor |
---|---|---|---|---|---|
Er:GYSGG [8] | 2.796 | End | 348 mW | 9.2% | 1.94 |
Er,Pr:GYSGG [9] | 2.79 | End | 284 mW | 14.8% | 1.72 |
GYSGG/Er,Pr:GYSGG [47] | 2.79 | End | 825 mW | 17% | 1.7 |
Er/Pr:GYSGG [48] | 2.79 | Side | 8.86 W | 7.7%2 | 7.5 |
Cr,Er,Pr:GYSGG [10] | 2.79 | Side1 | 315.8 mJ | 0.79%2 | — |
GYSGG/Cr,Er,Pr:GYSGG [49] | 2.79 | Side1 | 342.8 mJ | 0.86%2 | 3.7 |
Yb,Er,Ho:GYSGG [11] | 2.79 | End | 411 mW | 11.6% | 1.97 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, K. Laser Performance of Neodymium- and Erbium-Doped GYSGG Crystals. Crystals 2019, 9, 220. https://doi.org/10.3390/cryst9040220
Zhong K. Laser Performance of Neodymium- and Erbium-Doped GYSGG Crystals. Crystals. 2019; 9(4):220. https://doi.org/10.3390/cryst9040220
Chicago/Turabian StyleZhong, Kai. 2019. "Laser Performance of Neodymium- and Erbium-Doped GYSGG Crystals" Crystals 9, no. 4: 220. https://doi.org/10.3390/cryst9040220
APA StyleZhong, K. (2019). Laser Performance of Neodymium- and Erbium-Doped GYSGG Crystals. Crystals, 9(4), 220. https://doi.org/10.3390/cryst9040220