Femtosecond Laser Pulses Amplification in Crystals
Abstract
:1. Introduction
2. Femtosecond Laser Pulses Amplification in Laser Crystals
2.1. Femtosecond Laser Pulses Generation
2.2. Nanosecond Pulses Amplification in Laser Crystals
2.3. Specific Problems of Ultrashort Laser Pulses Amplification
2.4. Femtosecond Pulses Amplification in Ti:Sapphire Laser Crystals
2.5. Technical Difficulties Encountered by Amplification of Large Bandwidth Femtosecond Laser Pulses in High Power All Ti:Sapphire Laser Systems
3. Femtosecond Laser Pulses Amplification in Nonlinear Crystals
3.1. Second Order Nonlinear Optical Effects in Crystals
3.2. Optical Parametric Amplification (OPA) in Nonlinear Crystals
3.3. Broad-Bandwidth Parametric Amplification of Laser Pulses in Nonlinear Crystals
3.4. Optical Parametric Chirped Pulse Amplification (OPCPA) in Nonlinear Crystals
4. Hybrid Amplification in High Power Femtosecond Laser Systems
5. Conclusions
Funding
Conflicts of Interest
References
- Koechner, W. Solid State Laser Engineering, 5th ed.; Springer Science + Business Media: New York, NY, USA, 2006. [Google Scholar]
- Frantz, L.M.; Nodvik, J.S. Theory of Pulse Propagation in a Laser Amplifier. J. Appl. Phys. 1963, 34, 2346–2349. [Google Scholar] [CrossRef]
- Backus, S.; Durfee, C.G., III; Murnane, M.M.; Kapteyn, H.C. High power ultrafast lasers. Rev. Sci. Instrum. 1998, 69, 1207–1223. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in Relativistic Regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Moulton, P.F. Spectroscopic and Laser Characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Wall, K.F.; Sanchez, A. Titanium Sapphire Lasers. Linc. Lab. J. 1990, 3, 447–462. [Google Scholar]
- Available online: https://www.rp-photonics.com/titanium_sapphire_lasers.html (accessed on 2 June 2019).
- Kokta, M. Growth of Titanium-Doped Sapphire. In Topical Meeting on Tunable Solid-State Lasers; Optical Society of America: Washington, DC, USA, 1985; p. ThB4. [Google Scholar]
- Schmid, F.; Khattak, C.P. Growth of CoMgF2 and Ti:Al2O3. In Tunable Solid State Lasers; Hammerling, P., Budgor, A.B., Pinto, A., Eds.; Springer: New York, NY, USA, 1985; p. 122. [Google Scholar]
- Dong, J.; Deng, P. Ti: Sapphire crystals used in ultrafast lasers and amplifiers. J. Cryst. Growth 2004, 261, 514–519. [Google Scholar] [CrossRef]
- Joyce, D.B.; Schmid, F. Progress in the growth of large scale Ti: Sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth 2010, 312, 1138–1141. [Google Scholar] [CrossRef]
- GT Advanced Technologies. Available online: https://gtat.com/products/ti-sapphire/ (accessed on 2 June 2019).
- Available online: http://lighthousephotonics.com/products/sprout-g/ (accessed on 2 June 2019).
- Available online: https://www.laserquantum.com/products/detail.cfm?id=33#specification (accessed on 2 June 2019).
- Available online: https://www.thalesgroup.com/en/worldwide/group/market-specific-solutions-lasers-science-applications/lpss-lasers-science (accessed on 2 June 2019).
- Dabu, R. Extreme Light—High Power Lasers; Publishing House of the Romanian Academy: Bucharest, Romania, 2015; ISBN 978-973-27-2561-0. [Google Scholar]
- Sung, J.H.; Lee, S.K.; Yu, T.J.; Jeong, T.M.; Lee, J. 0.1 Hz 1 PW Ti: Sapphire laser. Opt. Lett. 2010, 35, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Liang, X.; Yu, L.; Xu, Y.; Xu, L.; Ma, L.; Lu, X.; Liu, Y.; Leng, Y.; Li, R.; et al. High-contrast 2.0 Petawatt Ti: Sapphire laser system. Opt. Express 2013, 21, 29231–29239. [Google Scholar] [CrossRef]
- Dabu, R. High Power Laser Systems. In High-Intensity Contrast Hybrid Femtosecond Laser Systems; Chapter 3. High-Power; InTech: London, UK, 2018; pp. 43–62. ISBN1 978-1-78923-740-5. ISBN2 978-1-78923-741-2. [Google Scholar]
- Giambruno, F.; Radier, C.; Rey, G.; Cheriaux, G. Design of a 10 PW (150 J/15 fs) peak power laser system with Ti: Sapphire medium through spectral control. Appl. Opt. 2011, 50, 2617–2621. [Google Scholar] [CrossRef] [PubMed]
- Kiriyama, H.; Pirozhkov, A.S.; Nishiuchi, M.; Fukada, Y.; Ogura, K.; Sagisaka, A.; Miyasaka, Y.; Mori, M.; Sakaki, H.; Dover, N.P.; et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 2018, 43, 2595–2598. [Google Scholar] [CrossRef] [PubMed]
- Verluise, F.; Laude, V.; Huignard, J.P.; Tournois, P.; Migus, A. Arbitrary dispersion control of ultrashort optical pulses with acoustic waves. J. Opt. Soc. Am. B 2000, 17, 138–145. [Google Scholar] [CrossRef]
- Jullien, A.; Kourtev, S.; Albert, O.; Cheriaux, G.; Etchepare, J.; Minkovski, N.; Saltiel, S.M. Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme. Appl. Phys. B 2006, 84, 409–414. [Google Scholar] [CrossRef]
- Jullien, A.; Canova, L.; Albert, O.; Boschetto, D.; Antonocci, L.; Cha, Y.H.; Rousseau, J.P.; Chaudet, P.; Cheriaux, G.; Etchepare, J.; et al. Spectral broadeneing and pulse duration reduction during cross-polarized wave generation: Influence of quadratic spectral phase. Appl. Phys. B 2007, 87, 595–601. [Google Scholar] [CrossRef]
- Fourmaux, S.; Payeur, S.; Alexandrov, A.; Serbanescu, C.; Martin, F.; Ozaki, T.; Kudryashov, A.; Kieffer, J.C. Laser beam wavefront correction for ultra-high intensities with the 200 TW laser system at the Advanced Laser Light Source. Opt. Express 2008, 16, 11987–11993. [Google Scholar] [CrossRef]
- Yanovsky, V.; Chvykov, V.; Kalinchenko, G.; Rousseau, P.; Planchon, T.; Matsouka, T.; Maksimchuk, A.; Nees, J.; Cheriaux, G.; Mourou, G.; et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express 2008, 16, 2109–2114. [Google Scholar] [CrossRef]
- Ertel, K.; Hooker, C.; Hawkes, S.J.; Parry, B.T.; Collier, L. ASE suppression in high energy Titanium sapphire amplifier. Opt. Express 2008, 16, 8039–8049. [Google Scholar] [CrossRef]
- Laux, S.; Lureau, F.; Radier, C.; Chalus, O.; Caradec, F.; Casagrande, O.; Pourtal, E.; Simon-Boisson, C.; Soyer, F.; Lebarny, P. Suppression of parasiting lasing in high energy, high repetition rate Ti: Sapphire laser amplifiers. Opt. Lett. 2012, 37, 1913–1915. [Google Scholar] [CrossRef]
- Chu, Y.X.; Liang, X.Y.; Yu, L.H.; Hu, L.; Lu, X.M.; Liu, Y.Q.; Leng, Y.X.; Li, R.X.; Xu, Z.Z. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed-pump time delay. Laser Phys. Lett. 2013, 10, 055302. [Google Scholar] [CrossRef]
- Chu, Y.; Gan, Z.; Liang, X.; Yu, L.; Lu, X.; Wang, C.; Wang, X.; Xu, L.; Lu, H.; Yin, D.; et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 2015, 40, 5011–5014. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, M.; Yamakawa, K.; Akahane, Y.; Ma, J.; Inoue, N.; Ueda, H.; Kiriyama, H. 0.85 PW, 33-fs Ti:sapphire laser. Opt. Lett. 2003, 28, 1594–1596. [Google Scholar] [CrossRef] [PubMed]
- Danson, C.; Hiller, D.; Hopps, N.; Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 2015, 3. [Google Scholar] [CrossRef]
- Nakamura, K.; Mao, H.S.; Gonsalves, J.G.; Vincenti, H.; Mittleberger, D.E.; Daniels, J.; Magana, A.; Toth, C.; Leemans, W.P. Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawtt Class Laser. IEEE J. Quantum Electron. 2017. [Google Scholar] [CrossRef]
- Matras, G.; Lureau, F.; Laux, S.; Casagrande, O.; Radier, C.; Chalus, O.; Caradec, F.; Boudjemaa, L.; Simon-Boisson, C.; Dabu, R.; et al. First Sub-25 fs Pettawatt Laser System; CLEO: San Jose, CA, USA, 2013. [Google Scholar]
- He, G.S.; Liu, S.H. Physics of Nonlinear Optics; World Scientific Publishing Co.: Singapore, 1999. [Google Scholar]
- Yariv, A.; Yeh, P. Optical Waves in Crystals; Chapter 12—Nonlinear Optics; John Wiley and Sons: New York, NY, USA, 1984; ISBN 0-471-09142-1. [Google Scholar]
- Byer, R.L. Optical Parametric Oscillators. In Quantum Electronics; Treatise, A., Rabin, H., Tang, C.L., Eds.; Nonlinear Optics, Part B; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1975; Volume 1, pp. 587–702. [Google Scholar]
- Cerullo, G.; De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Dabu, R. Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy. Opt. Express 2010, 18, 11689–11699. [Google Scholar] [CrossRef]
- Lozhkarev, V.V.; Friedman, G.I.; Ginzgburg, V.N.; Khazanov, E.A.; Palashov, O.V.; Sergeev, A.M.; Yakovlev, I.V. Study of Broadband Optical Parametric Chirped Pulse Amplification in a DKDP Crystal Pumped by the Second Harmonic of a Nd:YLF Laser. Laser Phys. 2005, 15, 1319–1333. [Google Scholar]
- United Crystals. Available online: https://unitedcrystals.com (accessed on 2 June 2019).
- Available online: https://www.as-photonics.com/snlo_files/SNLO_Introduction.pdf (accessed on 2 June 2019).
- Smith, A.V. Crystal Nonlinear Optics: With SNLO Examples; AS-Photonics: Albuquerque, NM, USA, 2018; ISBN 978-0-69-205678-3. [Google Scholar]
- Dubietis, A.; Jonusauskas, G.; Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1922, 88, 437–440. [Google Scholar] [CrossRef]
- Lozhkarev, V.V.; Friedman, G.I.; Ginzburg, V.N.; Katin, E.V.; Khazanov, E.A.; Kirsanov, A.V.; Luchinin, G.A.; Mal’shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. Compact 0.56 Petawatt laser system based on optical parametric amplification in KD*P crystals. Laser Phys. Lett. 2007, 4, 421–427. [Google Scholar] [CrossRef]
- Tang, Y.; Ross, I.N.; Hernandez-Gomez, C.; New, G.H.C.; Musgrave, I.; Chelkhov, O.V.; Matousek, P.; Collier, J.I. Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems. Opt. Lett. 2008, 33, 2386–2388. [Google Scholar] [CrossRef]
- Newlight Photonics. Available online: http://www.newlightphotonics.com/Nonlinear-Optical-Crystals (accessed on 2 June 2019).
- Yu, L.; Liang, X.; Xu, L.; Li, W.; Peng, C.; Hu, Z.; Wang, C.; Lu, X.; Chu, Y.; Gan, Z.; et al. Optimization for high-energy broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt. Lett. 2015, 40, 3412–3415. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhou, K.; Zuo, Y.; Zhu, Q.; Su, J.; Wang, X.; Wang, X.; Huang, X.; Jiang, X.; Jiang, D.; et al. Multi-petawatt laser facility based on optical parametric chirped-pulse amplification. Opt. Lett. 2017, 42, 2014–2017. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, C.; Shen, Z.; Zhang, Q.; Teng, H.; Wei, Z. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett. 2011, 36, 3194–3196. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Let. 2017, 42, 2058–2061. [Google Scholar] [CrossRef] [PubMed]
- Dabu, R. High Power, High Contrast Hybrid Femtosecond Laser Systems. In Exotic Nuclei and Nuclear/Particle Astrophysics (VI). Physics with Small Accelerators, Proceedings of the Carpathian Summer School of Physics 2016, Sinaia, Romania, 26 June–9 July 2016; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1852, p. 070001. [Google Scholar]
Ti:sapphire (Ti:Al2O3) | Cr:LiSAF (Cr:LiSrAlF6) | Cr:Forsterite (Cr:Mg2SiO4) | |
---|---|---|---|
Emission peak (nm) | 790 | 850 | 1240 |
Gain bandwidth (nm) | >200 | >150 | >150 |
Upper laser level lifetime (μs) | 3.2 | 67 | 2.7 |
Nonlinear index n2 (× 10−16 cm2/W) | 5 | 1.5 | 2 |
Optical pump wavelength (nm) | 488–532 nm | 640–690 nm | 1064 nm |
Property | Value |
---|---|
Chemical formula | Ti3+:Al2O3 |
Crystal structure | hexagonal |
Mass density | 3.98 g/cm3 |
Thermal conductivity (at 300 K) | 33 W m−1 K−1 |
Thermal expansion coefficient | 5 × 10−6 K−1 |
Temperature dependence of refractive index | 13 × 10−6 K−1 |
Refractive index at 800 nm | 1.76 |
Birefringence | Negative uniaxial |
Fluorescence lifetime | 3.2 μs |
Peak emission cross section (at 790 nm, polarization parallel to the c axis) | 4.1 × 10−19 cm2 |
Advantages | Drawbacks |
---|---|
• Noncritical pump pulse duration, acceptable in the range of 10–100 ns. • Non-critical signal-pump pulse synchronization time, in the range of 10 ns. • Non-critical seed-pump beams geometry configuration. • For high-energy Ti:sapphire amplifiers, high-energy green pump lasers, with ~10–20 ns pulse duration, are commercially available. | • Spectral band narrowing in high order of magnitude amplification regenerative amplifiers and red shifting in the near saturation operated multi-pass amplifiers provide longer recompressed amplified pulse. • Due to the amplified spontaneous emission, the intensity contrast of amplified femtosecond pulses decreases. • Thermal loading of the laser amplifying crystals generates thermal lenses, wavefront distortions, phase dispersion, and bad laser beam focusing. • Parasitic lasing limits the pump energy in large aperture Ti:sapphire crystal amplifiers. |
Crystal | Parametric Process | λp (nm) | λsc (nm) | λi (nm) | deff (pm/V) | θ (deg) | ϕ (deg) | α (deg) | Gain Bandwidth FWHM (nm) |
---|---|---|---|---|---|---|---|---|---|
BBO | BB-NOPA | 532 | 900 | 1301 | 2.07 | 23.7 | 0 | 2.26 | 120 |
BBO | Collinear OPA | 532 | 900 | 1301 | 2.07 | 22.6 | 0 | 0 | 13 |
DKDP | BB-NOPA | 527 | 950 | 1184 | 0.22 | 37.0 | 45 | 0.85 | 110 |
DKDP | Collinear OPA | 527 | 950 | 1184 | 0.22 | 36.7 | 45 | 0 | 15 |
LBO | BB-NOPA | 532 | 800 | 1588 | 0.83 | 90 | 12.6 | 1.11 | 70 |
LBO | Collinear OPA | 532 | 800 | 1588 | 0.83 | 90 | 9.4 | 0 | 12 |
Crystal | λp (nm) | λsc (nm) | λi (nm) | deff (pm/V) | θ (deg) | φ (deg) | α (deg) | L (mm) | Gain Bandwidth FWHM (nm) |
---|---|---|---|---|---|---|---|---|---|
BBO | 532 | 825 | 1497 | 2.07 | 23.8 | 0 | 2.41 | 9.9 | 150 |
DKDP | 527 | 900 | 1271 | 0.22 | 37.0 | 45 | 0.92 | 77.0 | 135 |
LBO | 532 | 934 | 1235 | 0.83 | 90 | 13.5 | 1.26 | 24.4 | 140 |
Advantages | Drawbacks |
---|---|
• Free from spectral band narrowing and red shifting. Large spectral bandwidth can be preserved during amplification process • Signal pulse is amplified only when signal and pump pulses are temporally and spatially overlapped in the nonlinear crystal. Intensity contrast is improved outside the signal and pump pulses overlapping time window • No thermal loading of nonlinear crystals Low amplified pulse beam wavefront distortions | • Critical signal-pump pulse synchronization and spatial overlapping. Optical synchronization of signal and pump laser pulses is necessary in case of femtosecond-picosecond pulses parametric amplification. Critical angle between signal and pump wave vectors. • Technical difficulties are related to the pump lasers development. High energy single beam pump lasers with useful pump energy is in the range of 1–3 ns pulse duration are required Low repetition rate of kJ-energy pump lasers causes the development of single-shot multi-PW laser systems • Critical spatial and temporal pump laser beam profiles. Amplified laser pulse spectrum strongly depends on pump pulse fluctuations Very stable spatial and temporal profiles of the pump laser pulses are required |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabu, R. Femtosecond Laser Pulses Amplification in Crystals. Crystals 2019, 9, 347. https://doi.org/10.3390/cryst9070347
Dabu R. Femtosecond Laser Pulses Amplification in Crystals. Crystals. 2019; 9(7):347. https://doi.org/10.3390/cryst9070347
Chicago/Turabian StyleDabu, Razvan. 2019. "Femtosecond Laser Pulses Amplification in Crystals" Crystals 9, no. 7: 347. https://doi.org/10.3390/cryst9070347
APA StyleDabu, R. (2019). Femtosecond Laser Pulses Amplification in Crystals. Crystals, 9(7), 347. https://doi.org/10.3390/cryst9070347