Pulse-Propagation Modeling and Experiment for Femtosecond-Laser Writing of Waveguide in Nd:YAG
Abstract
:1. Introduction
2. Unidirectional Pulse Propagation Equation Modeling to Predict Nonlinear Dynamics in Femtosecond Laser Processing of Crystal Materials
3. Experimental Demonstration and Modeling Validation
3.1. Waveguide Fabrication
3.2. Waveguide Characterization
3.3. Comparison of Experimental and Modeling Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–1731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, N.; Yang, J.; Chen, F.; de Aldana, J.R.V.; Lu, Q. Channel waveguide lasers in Nd: GGG crystals fabricated by femtosecond laser inscription. Opt. Express 2011, 19, 12503–12508. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; de Aldana, J.R.V.; del Rosal Rabes, B.; Chen, F. Waveguiding microstructures in Nd: YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription. Opt. Mater. 2015, 39, 125–129. [Google Scholar] [CrossRef]
- Siebenmorgen, J.; Calmano, T.; Petermann, K.; Huber, G. Highly efficient Yb: YAG channel waveguide laser written with a femtosecond-laser. Opt. Express 2010, 18, 16035–16041. [Google Scholar] [CrossRef]
- Siebenmorgen, J.; Petermann, K.; Huber, G.; Rademaker, K.; Nolte, S.; Tünnermann, A. Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser. Appl. Phys. B 2009, 97, 251. [Google Scholar] [CrossRef]
- Burghoff, J.; Nolte, S.; Tünnermann, A. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl. Phys. A 2007, 89, 127–132. [Google Scholar] [CrossRef]
- Liu, X.; Qu, S.; Tan, Y.; Zhang, C.; Chen, F. Buried channel waveguides in neodymium-doped KGd(WO4)2 fabricated by low-repetition-rate femtosecond laser writing. Appl. Phys. B 2011, 103, 145–149. [Google Scholar] [CrossRef]
- Chanal, M.; Fedorov, V.Y.; Chambonneau, M.; Clady, R.; Tzortzakis, S.; Grojo, D. Crossing the threshold of ultrafast laser writing in bulk silicon. Nat. Commun. 2017, 8, 773. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, V.; Jedrkiewicz, O.; Hadden, J.P.; Sotillo, B.; Vázquez, M.R.; Dentella, P.; Fernandez, T.T.; Chiappini, A.; Giakoumaki, A.N.; Le Phu, T.; et al. Femtosecond laser written photonic and microfluidic circuits in diamond. J. Phys. Photonics 2019, 1, 022001. [Google Scholar] [CrossRef]
- Bharadwaj, V.; Wang, Y.; Fernandez, T.T.; Ramponi, R.; Eaton, S.M.; Galzerano, G. Femtosecond laser written diamond waveguides: A step towards integrated photonics in the far infrared. Opt. Mater. 2018, 85, 183–185. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, B.; Bharadwaj, V.; Hadden, J.P.; Sakakura, M.; Chiappini, A.; Fernandez, T.T.; Longhi, S.; Jedrkiewicz, O.; Shimotsuma, Y.; Criante, L.; et al. Diamond photonics platform enabled by femtosecond laser writing. Sci. Rep. 2016, 6, 35566. [Google Scholar] [CrossRef] [PubMed]
- Panusa, G.; Pu, Y.; Wang, J.; Moser, C.; Psaltis, D. Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane. Opt. Mater. Express 2019, 9, 128–138. [Google Scholar] [CrossRef]
- Chen, F.; de Aldana, J.V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Ródenas, A.; Torchia, G.A.; Lifante, G.; Cantelar, E.; Lamela, J.; Jaque, F.; Roso, L.; Jaque, D. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: Micro-spectroscopy experiments and beam propagation calculations. Appl. Phys. B 2009, 95, 85–96. [Google Scholar] [CrossRef]
- Okhrimchuk, A. Femtosecond fabrication of waveguides in ion-doped laser crystals. In Coherence and Ultrashort Pulse Laser Emission; IntechOpen: London, UK, 2010. [Google Scholar]
- Calmano, T.; Siebenmorgen, J.; Hellmig, O.; Petermann, K.; Huber, G. Nd: YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing. Appl. Phys. B 2010, 100, 131–135. [Google Scholar] [CrossRef]
- Li, S.-L.; Ye, Y.-K.; Wang, M.-W. Femtosecond laser written channel optical waveguide in Nd: YAG crystal. Opt. Laser Technol. 2014, 58, 89–93. [Google Scholar] [CrossRef]
- Kolesik, M.; Moloney, J.V. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 2004, 70, 036604. [Google Scholar] [CrossRef]
- Itina, T.E.; Mamatkulov, M.; Sentis, M.L. Nonlinear fluence dependencies in femtosecond laser ablation of metals and dielectric materials. Opt. Eng. 2005, 44, 051109. [Google Scholar] [CrossRef]
- Zavedeev, E.; Kononenko, V.; Konov, V. Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range. Laser Phys. 2015, 26, 016101. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M. Critical power for self-focusing in the case of ultrashort laser pulses. Phys. Rev. A 2013, 87, 053829. [Google Scholar] [CrossRef]
- Darginavičius, J.; Majus, D.; Jukna, V.; Garejev, N.; Valiulis, G.; Couairon, A.; Dubietis, A. Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 μm. Opt. Express 2013, 21, 25210–25220. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Hu, L.; Liang, Z. Mode-field-diameter and the coupling loss between inner and outer segment of photoreceptors. Opt. Photonics J. 2015, 5, 151. [Google Scholar] [CrossRef]
- Fan, C.; Liang, A. Splice loss between different Gaussian-elliptic-field single-mode fibers. J. Lightwave Technol. 1990, 8, 173–176. [Google Scholar] [CrossRef]
- Nemoto, S.; Makimoto, T. Analysis of splice loss in single-mode fibres using a Gaussian field approximation. Opt. Quantum Electron. 1979, 11, 447–457. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Energy gap | 1.12 eV |
Multi-photon ionization (MPI) order | 2 (@1.3 μm) |
Nonlinear coefficient | 1.5 × 10−18 m2/W |
Neutral density | 5 × 1028 m−3 |
Collision time | 3.3 fs |
MPI cross-section | σ2 = 5.23 × 10−22 m4/W2s |
Parameter | Value |
---|---|
Energy gap | 6.5 eV |
MPI order | 11 (@2 μm) |
Nonlinear coefficient | 7 × 10−20 m2/W |
Neutral density | 7 × 1028 m−3 |
Collision time | 3 fs |
MPI cross-section | σ11 = 2 × 10−181 m4/W2s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Sahoo, P.K.; Arteaga-Sierra, F.R.; Dorrer, C.; Qiao, J. Pulse-Propagation Modeling and Experiment for Femtosecond-Laser Writing of Waveguide in Nd:YAG. Crystals 2019, 9, 434. https://doi.org/10.3390/cryst9080434
Feng T, Sahoo PK, Arteaga-Sierra FR, Dorrer C, Qiao J. Pulse-Propagation Modeling and Experiment for Femtosecond-Laser Writing of Waveguide in Nd:YAG. Crystals. 2019; 9(8):434. https://doi.org/10.3390/cryst9080434
Chicago/Turabian StyleFeng, Tao, Pankaj K. Sahoo, Francisco R. Arteaga-Sierra, Christophe Dorrer, and Jie Qiao. 2019. "Pulse-Propagation Modeling and Experiment for Femtosecond-Laser Writing of Waveguide in Nd:YAG" Crystals 9, no. 8: 434. https://doi.org/10.3390/cryst9080434
APA StyleFeng, T., Sahoo, P. K., Arteaga-Sierra, F. R., Dorrer, C., & Qiao, J. (2019). Pulse-Propagation Modeling and Experiment for Femtosecond-Laser Writing of Waveguide in Nd:YAG. Crystals, 9(8), 434. https://doi.org/10.3390/cryst9080434