Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity
Abstract
:1. Introduction
2. Production of PHAs in Fed-Batch Bioreactor Systems
2.1. Control of Fed-Batch Cultivations
2.2. Limitations of HCD Cultivations: The Oxygen Transfer Issue
2.3. Scale-Up Fed-Batch PHA Production
3. Continuous and Semi-Continuous Bioreactor Systems
3.1. Continuous Processes in PHA Production
3.2. Cyclic/Repeated (Semi-Continuous) Processes Culture in PHA Production
3.3. Sterility Challenges
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Worm, B.; Lotze, H.K.; Jubinville, I.; Wilcox, C.; Jambeck, J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 2017, 42, 1–26. [Google Scholar] [CrossRef]
- Rochman, C.M. The Complex Mixture, Fate and Toxicity of Chemicals Associated with Plastic Debris in the Marine Environment. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 117–140. ISBN 978-3-319-16509-7. [Google Scholar] [Green Version]
- Hammer, J.; Kraak, M.H.S.; Parsons, J.R. Plastics in the Marine Environment: The Dark Side of a Modern Gift. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; Volume 220, pp. 1–44. ISBN 978-1-4614-3413-9. [Google Scholar]
- Philp, J.C.; Ritchie, R.J.; Guy, K. Biobased plastics in a bioeconomy. Trends Biotechnol. 2013, 31, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Bjorn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, M.; Gutow, L.; Klages, M. (Eds.) Marine Anthropogenic Litter; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-16510-3. [Google Scholar]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Bejgarn, S.; MacLeod, M.; Bogdal, C.; Breitholtz, M. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 2015, 132, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Hale, R.C. Are the Risks from Microplastics Truly Trivial? Environ. Sci. Technol. 2018, 52, 931. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Madison, L.L.; Huisman, G.W. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. [Google Scholar] [PubMed]
- Deroiné, M.; César, G.; Le Duigou, A.; Davies, P.; Bruzaud, S. Natural Degradation and Biodegradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments. J. Polym. Environ. 2015, 23, 493–505. [Google Scholar] [CrossRef]
- Braunegg, G.; Bona, R.; Koller, M. Sustainable Polymer Production. Polym.-Plast. Technol. Eng. 2004, 43, 1779–1793. [Google Scholar] [CrossRef]
- Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr. Opin. Microbiol. 2010, 13, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Di Donato, P.; Abbamondi, G.R.; Nicolaus, B. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea. Archaea 2011, 2011, 693253. [Google Scholar] [CrossRef] [PubMed]
- Chanprateep, S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 2010, 110, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Srivastava, A.K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005, 40, 607–619. [Google Scholar] [CrossRef]
- Noda, I.; Lindsey, S.B.; Caraway, D. Nodax™ Class PHA Copolymers: Their Properties and Applications. In Plastics from Bacteria; Chen, G.G.-Q., Ed.; Springer: Berlin/Heidelberg, Geramny, 2010; Volume 14, pp. 237–255. ISBN 978-3-642-03286-8. [Google Scholar]
- Braunegg, G.; Lefebvre, G.; Genser, K.F. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J. Biotechnol. 1998, 65, 127–161. [Google Scholar] [CrossRef]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Akaraonye, E.; Keshavarz, T.; Roy, I. Production of polyhydroxyalkanoates: The future green materials of choice. J. Chem. Technol. Biotechnol. 2010, 85, 732–743. [Google Scholar] [CrossRef]
- Chen, G.-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, K.; Dumont, M.-J.; Del Rio, L.F.; Orsat, V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017, 9, 58–70. [Google Scholar] [CrossRef]
- Harding, K.; Dennis, J.; Vonblottnitz, H.; Harrison, S. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J. Biotechnol. 2007, 130, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Kettl, K.-H.; Titz, M.; Koller, M.; Schnitzer, H.; Narodoslawsky, M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol. Environ. Policy 2013, 15, 525–536. [Google Scholar] [CrossRef]
- Akiyama, M.; Tsuge, T.; Doi, Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 2003, 80, 183–194. [Google Scholar] [CrossRef]
- Gurieff, N.; Lant, P. Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresour. Technol. 2007, 98, 3393–3403. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A. A life cycle assessment of biopolymer production from material recovery facility residuals. Resour. Conserv. Recycl. 2012, 61, 69–74. [Google Scholar] [CrossRef]
- Lynd, L.R.; Wang, M.Q. A Product-Nonspecific Framework for Evaluating the Potential of Biomass-Based Products to Displace Fossil Fuels. J. Ind. Ecol. 2003, 7, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.H.; Tan, R.B.H. Environmental impacts of conventional plastic and bio-based carrier bags: Part 2: End-of-life options. Int. J. Life Cycle Assess. 2010, 15, 338–345. [Google Scholar] [CrossRef]
- Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour. Conserv. Recycl. 2013, 78, 54–66. [Google Scholar] [CrossRef]
- Koller, M.; Sandholzer, D.; Salerno, A.; Braunegg, G.; Narodoslawsky, M. Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey. Resour. Conserv. Recycl. 2013, 73, 64–71. [Google Scholar] [CrossRef]
- Aeschelmann, F.; Carus, M. Biobased Building Blocks and Polymers in the World: Capacities, Production, and Applications–Status Quo and Trends Towards 2020. Ind. Biotechnol. 2015, 11, 154–159. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Możejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016, 192, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Maršálek, L.; de Sousa Dias, M.M.; Braunegg, G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017, 37, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, S.; Serrano, A.; Pantión, A.A.; Alonso-Fariñas, B. Challenges of scaling-up PHA production from waste streams. A review. J. Environ. Manag. 2018, 205, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Salehizadeh, H.; Van Loosdrecht, M.C.M. Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnol. Adv. 2004, 22, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sabirova, J.; Soetaert, W.; Ki Carol Lin, S. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 2012, 6, 14–25. [Google Scholar] [CrossRef]
- Fu, J.; Sharma, U.; Sparling, R.; Cicek, N.; Levin, D.B. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Can. J. Microbiol. 2014, 60, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Hill, D.; Kowalczuk, M.; Johnston, B.; Adamus, G.; Irorere, V.; Radecka, I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 2016, 17, 1157. [Google Scholar] [CrossRef] [PubMed]
- Nikodinovic-Runic, J.; Guzik, M.; Kenny, S.T.; Babu, R.; Werker, A.; O Connor, K.E. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. In Advances in Applied Microbiology; Elsevier: New York, NY, USA, 2013; Volume 84, pp. 139–200. ISBN 978-0-12-407673-0. [Google Scholar]
- Kaur, G.; Roy, I. Strategies for Large-scale Production of Polyhydroxyalkanoates. Chem. Biochem. Eng. Q. 2015, 29, 157–172. [Google Scholar] [CrossRef]
- Koller, M. A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. Fermentation 2018, 4, 30. [Google Scholar] [CrossRef]
- Ienczak, J.L.; Schmidell, W.; de Aragão, G.M.F. High-cell-density culture strategies for polyhydroxyalkanoate production: A review. J. Ind. Microbiol. Biotechnol. 2013, 40, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Maclean, H.; Sun, Z.; Ramsay, J.; Ramsay, B. Decaying exponential feeding of nonanoic acid for the production of medium-chain-length poly(3-hydroxyalkanoates) by Pseudomonas putida KT2440. Can. J. Chem. 2008, 86, 564–569. [Google Scholar] [CrossRef]
- Wang, F.; Lee, S.Y. Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl. Environ. Microbiol. 1997, 63, 3703–3706. [Google Scholar] [PubMed]
- Koller, M.; Muhr, A. Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem. Biochem. Eng. Q. 2014, 28, 65–77. [Google Scholar]
- Choi, J.; Lee, S.Y. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl. Microbiol. Biotechnol. 1999, 51, 13–21. [Google Scholar] [CrossRef]
- De Koning, G.J.M.; Kellerhals, M.; van Meurs, C.; Witholt, B. A process for the recovery of poly(hydroxyalkanoates) from Pseudomonads Part 2: Process development and economic evaluation. Bioprocess Eng. 1997, 17, 15–21. [Google Scholar] [CrossRef]
- Wang, F.; Lee, S.Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 1997, 63, 4765–4769. [Google Scholar] [PubMed]
- Yamane, T.; Fukunaga, M.; Lee, Y.W. Increased PHB productivity by high-cell-density fed-batch culture of Alcaligenes latus, a growth-associated PHB producer. Biotechnol. Bioeng. 1996, 50, 197–202. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2007, 74, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ramsay, J.; Guay, M.; Ramsay, B. Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J. Biotechnol. 2009, 143, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Lee, S.C.; Lee, S.Y.; Chang, H.N.; Chang, Y.K.; Woo, S.I. Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 1994, 43, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Oh, D.H.; Ahn, W.S.; Lee, Y.; Choi, J.; Lee, S.Y. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol. Bioeng. 2000, 67, 240–244. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, Z.; Ramsay, J.A.; Ramsay, B.A. Fed-batch production of MCL-PHA with elevated 3-hydroxynonanoate content. AMB Express 2013, 3, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Ramsay, J.A.; Ramsay, B.A. Fed-batch production of poly-3-hydroxydecanoate from decanoic acid. J. Biotechnol. 2016, 218, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Duane, G.; Kenny, S.T.; Cerrone, F.; Guzik, M.W.; Babu, R.P.; Casey, E.; O’Connor, K.E. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnol. Bioeng. 2015, 112, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Cerrone, F.; Duane, G.; Casey, E.; Davis, R.; Belton, I.; Kenny, S.T.; Guzik, M.W.; Woods, T.; Babu, R.P.; O’Connor, K. Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Appl. Microbiol. Biotechnol. 2014, 98, 9217–9228. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.J.; Lee, I.Y.; Yoon, S.C.; Shin, Y.C.; Park, Y.H. Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 1997, 20, 500–505. [Google Scholar] [CrossRef]
- Haywood, G.W.; Anderson, A.J.; Ewing, D.F.; Dawes, E.A. Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl. Environ. Microbiol. 1990, 45, 3354–3359. [Google Scholar]
- Huijberts, G.N.M.; Eggink, G.; de Waard, P.; Huisman, G.W.; Witholt, B. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Microbiol. Biotechnol. 1992, 58, 536–544. [Google Scholar]
- Lageveen, R.G.; Huisman, G.W.; Preusting, H.; Ketelaar, P.; Eggink, G.; Witholt, B. Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 1988, 54, 2924–2932. [Google Scholar] [PubMed]
- Poblete-Castro, I.; Rodriguez, A.L.; Lam, C.M.C.; Kessler, W. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J. Microbiol. Biotechnol. 2014, 24, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Poblete-Castro, I.; Binger, D.; Oehlert, R.; Rohde, M. Comparison of mcl-poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: Citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol. 2014, 14, 962. [Google Scholar] [CrossRef] [PubMed]
- Diniz, S.C.; Taciro, M.K.; Gomez, J.G.C.; da Cruz Pradella, J.G. High cell density cultivation of Pseudomonas putida IPT 046 and medium chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl. Biochem. Biotechnol. 2004, 119, 51–70. [Google Scholar] [CrossRef]
- Preusting, H.; van Houten, R.; Hoefs, A.; van Langenberghe, E.K.; Favre-Bulle, O.; Witholt, B. High cell density cultivation of Pseudomonas oleovorans: Growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems. Biotechnol. Bioeng. 1993, 41, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Hazenberg, W.; Witholt, B. Efficient production of medium-chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: Economic considerations. Appl. Microbiol. Biotechnol. 1997, 48, 588–596. [Google Scholar] [CrossRef]
- Dufresne, A.; Samain, E. Preparation and characterization of a poly(β-hydroxyoctanoate) latex produced by Pseudomonas oleovorans. Macromolecules 1998, 31, 6426–6433. [Google Scholar] [CrossRef]
- Kellerhals, M.B.; Kessler, B.; Witholt, B. Closed-loop control of bacterial high-cell-density fed-batch cultures: Production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions. Biotechnol. Bioeng. 1999, 65, 306–315. [Google Scholar] [CrossRef]
- Kellerhals, M.B.; Hazenberg, W.; Witholt, B. High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid phase media. Enzyme Microb. Technol. 1999, 24, 111–116. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wong, H.H.; Choi, J.; Lee, S.H.; Lee, S.C.; Han, C.S. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 2000, 68, 466–470. [Google Scholar] [CrossRef]
- Kim, B.S. Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol. Lett. 2002, 24, 125–130. [Google Scholar] [CrossRef]
- Shang, L.; Jiang, M.; Yun, Z.; Yan, H.-Q.; Chang, H.-N. Mass production of medium-chain-length poly(3-hydroxyalkanoates) from hydrolyzed corn oil by fed-batch culture of Pseudomonas putida. World J. Microbiol. Biotechnol. 2008, 24, 2783–2787. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2009, 82, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Andin, N.; Longieras, A.; Veronese, T.; Marcato, F.; Molina-Jouve, C.; Uribelarrea, J.-L. Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol. Bioprocess Eng. 2017, 22, 308–318. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamane, T.; Shimizu, S. Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol. 1986, 24, 370–374. [Google Scholar] [CrossRef]
- Kim, B.S.; Lee, S.Y.; Chang, H.N. Production of poly-β-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett. 1992, 14, 811–816. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, P.; Lee, H.S.; Kim, J.H. High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 1996, 18, 25–30. [Google Scholar] [CrossRef]
- Bourque, D.; Pomerleau, Y.; Groleau, D. High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: Production of high-molecular-mass PHB. Appl. Microbiol. Biotechnol. 1995, 44, 367–376. [Google Scholar] [CrossRef]
- Ryu, H.W.; Hahn, S.K.; Chang, Y.K.; Chang, H.N. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation. Biotechnol. Bioeng. 1997, 55, 28–32. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.Y.; Han, K. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 1998, 64, 4897–4903. [Google Scholar]
- Wang, F.; Lee, S.Y. High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. Biotechnol. Bioeng. 1998, 58, 325–328. [Google Scholar] [CrossRef]
- Wong, H.H.; Lee, S.Y. Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 1998, 50, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Jiang, M.; Chang, H.N. Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol. Lett. 2003, 25, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Quillaguamán, J.; Doan-Van, T.; Guzmán, H.; Guzmán, D.; Martín, J.; Everest, A.; Hatti-Kaul, R. Poly(3-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture. Appl. Microbiol. Biotechnol. 2008, 78, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, J.M.B.T.; de Almeida, M.C.M.D.; Grandfils, C.; da Fonseca, M.M.R. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009, 44, 509–515. [Google Scholar] [CrossRef]
- Ibrahim, M.H.A.; Steinbuchel, A. Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl. Environ. Microbiol. 2009, 75, 6222–6231. [Google Scholar] [CrossRef] [PubMed]
- Chanprateep, S.; Buasri, K.; Muangwong, A.; Utiswannakul, P. Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Degrad. Stab. 2010, 95, 2003–2012. [Google Scholar] [CrossRef]
- Da Cruz Pradella, J.G.; Taciro, M.K.; Mateus, A.Y.P. High-cell-density poly (3-hydroxybutyrate) production from sucrose using Burkholderia sacchari culture in airlift bioreactor. Bioresour. Technol. 2010, 101, 8355–8360. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz Pradella, J.G.; Ienczak, J.L.; Delgado, C.R.; Taciro, M.K. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol. Lett. 2012, 34, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Riedel, S.L.; Bader, J.; Brigham, C.J.; Budde, C.F.; Yusof, Z.A.M.; Rha, C.; Sinskey, A.J. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 2012, 109, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grousseau, E.; Blanchet, E.; Déléris, S.; Albuquerque, M.G.E.; Paul, E.; Uribelarrea, J.-L. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator. Bioresour. Technol. 2013, 148, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Kanjanachumpol, P.; Kulpreecha, S.; Tolieng, V.; Thongchul, N. Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst. Eng. 2013, 36, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Cesário, M.T.; Raposo, R.S.; de Almeida, M.C.M.D.; van Keulen, F.; Ferreira, B.S.; da Fonseca, M.M.R. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol. 2014, 31, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachrimanidou, V.; Kopsahelis, N.; Papanikolaou, S.; Kookos, I.K.; De Bruyn, M.; Clark, J.H.; Koutinas, A.A. Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour. Technol. 2014, 172, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Mozumder, M.S.I.; De Wever, H.; Volcke, E.I.P.; Garcia-Gonzalez, L. A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem. 2014, 49, 365–373. [Google Scholar] [CrossRef]
- Huschner, F.; Grousseau, E.; Brigham, C.J.; Plassmeier, J.; Popovic, M.; Rha, C.; Sinskey, A.J. Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem. 2015, 50, 165–172. [Google Scholar] [CrossRef]
- Thinagaran, L.; Sudesh, K. Evaluation of sludge palm oil as feedstock and development of efficient method for its utilization to produce polyhydroxyalkanoate. Waste Biomass Valoriz. 2017. [Google Scholar] [CrossRef]
- Miranda De Sousa Dias, M.; Koller, M.; Puppi, D.; Morelli, A.; Chiellini, F.; Braunegg, G. Fed-batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering 2017, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Harms, P.; Kostov, Y.; Rao, G. Bioprocess monitoring. Curr. Opin. Biotechnol. 2002, 13, 124–127. [Google Scholar] [CrossRef]
- Riesenberg, D.; Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 1999, 51, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.Y.; Park, S.; Middelberg, A.P.J. Control of fed-batch fermentations. Biotechnol. Adv. 1999, 17, 29–48. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2006, 71, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Follonier, S.; Riesen, R.; Zinn, M. Pilot-scale production of functionalized mcl-PHA from grape pomace supplemented with fatty acids. Chem. Biochem. Eng. Q. 2015, 29, 113–121. [Google Scholar] [CrossRef]
- Kellerhals, M.B.; Kessler, B.; Witholt, B.; Tchouboukov, A.; Brandl, H. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 2000, 33, 4690–4698. [Google Scholar] [CrossRef]
- Możejko, J.; Ciesielski, S. Pulsed feeding strategy is more favorable to medium-chain-length polyhydroxyalkanoates production from waste rapeseed oil. Biotechnol. Prog. 2014, 30, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 1996, 14, 431–438. [Google Scholar] [CrossRef]
- Elbahloul, Y.; Steinbuchel, A. Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl. Environ. Microbiol. 2009, 75, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Pratt, S.; Yuan, Z.; Gapes, D.; Dorigo, M.; Zeng, R.J.; Keller, J. Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. Biotechnol. Bioeng. 2003, 81, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Follonier, S.; Henes, B.; Panke, S.; Zinn, M. Putting cells under pressure: A simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol. Bioeng. 2012, 109, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Belo, I.; Mota, M. Over-pressurized bioreactors: Application to microbial cell cultures. Biotechnol. Prog. 2014, 30, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Mota, M.; Belo, I. Oxygen mass transfer rate in a pressurized lab-scale stirred bioreactor. Chem. Eng. Technol. 2013, 36, 1779–1784. [Google Scholar] [CrossRef] [Green Version]
- Inan, K.; Sal, F.A.; Rahman, A.; Putman, R.J.; Agblevor, F.A.; Miller, C.D. Microbubble assisted polyhydroxybutyrate production in Escherichia coli. BMC Res. Notes 2016, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.J.; Crivellari, F.; Gagnon, Z.; Betenbaugh, M.J. Microfluidic bubbler facilitates near complete mass transfer for sustainable multiphase and microbial processing: Microfluidic Bubbler Facilitates Mass Transfer. Biotechnol. Bioeng. 2016, 113, 1924–1933. [Google Scholar] [CrossRef] [PubMed]
- Olle, B.; Bucak, S.; Holmes, T.C.; Bromberg, L.; Hatton, T.A.; Wang, D.I.C. Enhancement of Oxygen Mass Transfer Using Functionalized Magnetic Nanoparticles. Ind. Eng. Chem. Res. 2006, 45, 4355–4363. [Google Scholar] [CrossRef]
- Kundu, A.; Dumont, E.; Duquenne, A.-M.; Delmas, H. Mass Transfer Characteristics in Gas-liquid-liquid System. Can. J. Chem. Eng. 2008, 81, 640–646. [Google Scholar] [CrossRef]
- Gomes, N.; Aguedo, M.; Teixeira, J.; Belo, I. Oxygen mass transfer in a biphasic medium: Influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem. Eng. J. 2007, 35, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Dumont, E.; Andrès, Y.; Le Cloirec, P. Effect of organic solvents on oxygen mass transfer in multiphase systems: Application to bioreactors in environmental protection. Biochem. Eng. J. 2006, 30, 245–252. [Google Scholar] [CrossRef]
- Dumont, E.; Delmas, H. Mass transfer enhancement of gas absorption in oil-in-water systems: A review. Chem. Eng. Process. Process Intensif. 2003, 42, 419–438. [Google Scholar] [CrossRef]
- Rols, J.L.; Goma, G. Enhanced oxygen transfer rates in fermentation using soybean oil-in-water dispersions. Biotechnol. Lett. 1991, 13, 7–12. [Google Scholar] [CrossRef]
- Jia, S.; Chen, G.; Kahar, P.; Choi, D.B.; Okabe, M. Effect of soybean oil on oxygen transfer in the production of tetracycline with an airlift bioreactor. J. Biosci. Bioeng. 1999, 87, 825–827. [Google Scholar] [CrossRef]
- Wei, X.-X.; Shi, Z.-Y.; Yuan, M.-Q.; Chen, G.-Q. Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 2009, 82, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.; Nies, S.; Wierckx, N.; Blank, L.M.; Rosenbaum, M.A. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol. 2015, 6, 284. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Zu, L.; Yang, C. Gas-Liquid Mass Transfer Characteristics with Microbubble Aeration—I. Standard Stirred Tank. Chem. Eng. Technol. 2016, 39, 945–952. [Google Scholar] [CrossRef]
- Liu, C.; Tanaka, H.; Zhang, L.; Zhang, J.; Huang, X.; Ma, J.; Matsuzawa, Y. Fouling and structural changes of Shirasu porous glass (SPG) membrane used in aerobic wastewater treatment process for microbubble aeration. J. Membr. Sci. 2012, 421–422, 225–231. [Google Scholar] [CrossRef]
- Byrom, D. Production of poly-β-hydroxybutyrate: Poly-β-hydroxyvalerate copolymers. FEMS Microbiol. Lett. 1992, 103, 247–250. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E.; Santos, V.E.; Merchuk, J.C. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 2010, 49, 289–307. [Google Scholar] [CrossRef]
- Lara, A.R.; Galindo, E.; Ramírez, O.T.; Palomares, L.A. Living with heterogeneities in bioreactors. Mol. Biotechnol. 2006, 34, 355–381. [Google Scholar] [CrossRef]
- Junker, B.H. Scale-up methodologies for Escherichia coli and yeast fermentation processes. J. Biosci. Bioeng. 2004, 97, 347–364. [Google Scholar] [CrossRef]
- Schmidt, F.R. Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol. 2005, 68, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Dixit, M.; Bandiya, A.; Chavda, S.; Desai, A.J. Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour. Technol. 2008, 99, 5749–5755. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Zhang, G.; Park, S.; Lee, S.Y. Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 2001, 57, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Gorenflo, V.; Schmack, G.; Vogel, R.; Steinbüchel, A. Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2001, 2, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, S.Y.; Shin, K.; Lee, W.G.; Park, S.J.; Chang, H.N.; Chang, Y.K. Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fed-batch culture of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 2002, 7, 371–374. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.P.; Lee, S.Y. Production of poly(3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter. Biotechnol. Lett. 2002, 24, 185–189. [Google Scholar] [CrossRef]
- Shang, L.; Jiang, M.; Ryu, C.H.; Chang, H.N.; Cho, S.H.; Lee, J.W. Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: Evaluation by CO2 pulse injection and autogenous CO2 methods. Biotechnol. Bioeng. 2003, 83, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Nomura, C.T.; Perrotta, J.A.; Stipanovic, A.J.; Nakas, J.P. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol. Prog. 2009. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, D.; Madkour, M.H.; Al-Ghamdi, M.A.; Shabbaj, I.I.; Steinbüchel, A. Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express 2012, 2, 59. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, P.; Suttar, R.; Nilegaonkar, S.; Kulkarni, S.; Kanekar, P. Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J. Biochem. Technol. 2012, 4, 512–517. [Google Scholar]
- Ye, J.; Huang, W.; Wang, D.; Chen, F.; Yin, J.; Li, T.; Zhang, H.; Chen, G.-Q. Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol. J. 2018, 13, 1800074. [Google Scholar] [CrossRef] [PubMed]
- Doran, P.M. Bioprocess Engineering Principles, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2013; ISBN 978-0-12-220851-5. [Google Scholar]
- Du, G.-C.; Chen, J.; Gao, H.-J.; Chen, Y.-G.; Lun, S.-Y. Effects of environmental conditions on cell growth and poly-β-hydroxybutyrate accumulation in Alcaligenes eutrophus. World J. Microbiol. Biotechnol. 2000, 16, 9–13. [Google Scholar] [CrossRef]
- Berezina, N. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. New Biotechnol. 2013, 30, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Senior, P.J.; Beech, G.A.; Ritchie, G.A.F.; Dawes, E.A. The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem. J. 1972, 128, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Braunegg, G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2015, 2, 94–121. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates. Appl. Microbiol. Biotechnol. 2007, 75, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Braunegg, G.; Lefebvre, G.; Renner, G.; Zeiser, A.; Haage, G.; Loidl-Lanthaler, K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can. J. Microbiol. 1995, 41, 239–248. [Google Scholar] [CrossRef]
- Hartmann, R.; Hany, R.; Witholt, B.; Zinn, M. Simultaneous Bbosynthesis of two copolymers in Pseudomonas putida GPo1 using a two-stage continuous culture system. Biomacromolecules 2010, 11, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Huijberts, G.N.M.; Eggink, G. Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl. Microbiol. Biotechnol. 1996, 46, 233–239. [Google Scholar] [CrossRef]
- Hartmann, R.; Hany, R.; Pletscher, E.; Ritter, A.; Witholt, B.; Zinn, M. Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: Batch versus chemostat production. Biotechnol. Bioeng. 2006, 93, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Zinn, M.; Durner, R.; Zinn, H.; Ren, Q.; Egli, T.; Witholt, B. Growth and accumulation dynamics of poly(3-hydroxyalkanoate) (PHA) in Pseudomonas putida GPo1 cultivated in continuous culture under transient feed conditions. Biotechnol. J. 2011, 6, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Koyama, N.; Doi, Y. Continuous production of poly(3-hydroxybutyrate-co-3-hyhroxyvalerate) by Alcaligenes eutrophus. Biotechnol. Lett. 1995, 17, 281–284. [Google Scholar] [CrossRef]
- Preusting, H.; Hazenberg, W.; Witholt, B. Continuous production of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans in a high-cell-density, two-liquid-phase chemostat. Enzyme Microb. Technol. 1993, 15, 311–316. [Google Scholar] [CrossRef]
- Ramsay, B.A.; Saracovan, I.; Ramsay, J.A.; Marchessault, R.H. Continuous production of long-side-chain poly-3-hydroxyalkanoates by Pseudomonas oleovorans. Appl. Environ. Microbiol. 1991, 57, 625–629. [Google Scholar] [PubMed]
- Heijnen, J.J.; Terwisscha van Scheltinga, A.H.; Straathof, A.J. Fundamental bottlenecks in the application of continuous bioprocesses. J. Biotechnol. 1992, 22, 3–20. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef]
- Jung, K.; Hazenberg, W.; Prieto, M.; Witholt, B. Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol. Bioeng. 2001, 72, 19–24. [Google Scholar] [CrossRef]
- Du, G.; Chen, J.; Yu, J.; Lun, S. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J. Biotechnol. 2001, 88, 59–65. [Google Scholar] [CrossRef]
- Atlić, A.; Koller, M.; Scherzer, D.; Kutschera, C.; Grillo-Fernandes, E.; Horvat, P.; Chiellini, E.; Braunegg, G. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl. Microbiol. Biotechnol. 2011, 91, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, B.A.; Lomaliza, K.; Chavarie, C.; Dubé, B.; Ramsay, J.A. Production of poly-(beta-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl. Environ. Microbiol. 1990, 56, 2093–2098. [Google Scholar] [PubMed]
- Lillo, J.G.; Rodriguez-Valera, F. Effects of Culture Conditions on Poly(β-Hydroxybutyric Acid) Production by Haloferax mediterranei. Appl. Environ. Microbiol. 1990, 56, 2517–2521. [Google Scholar] [PubMed]
- Durner, R.; Witholt, B.; Egli, T. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Appl. Environ. Microbiol. 2000, 66, 3408–3414. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.S.; Park, S.J.; Lee, S.Y. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett. 2001, 23, 235–240. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, A.K. Repeated batch cultivation of Ralstonia eutropha for poly (β-hydroxybutyrate) production. Biotechnol. Lett. 2005, 27, 1401–1403. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-Y.; Duan, K.-J.; Huang, S.-Y.; Chen, C.W. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 2006, 33, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.H.A.; Steinbuchel, A. High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. Strain MW10. Appl. Environ. Microbiol. 2010, 76, 7890–7895. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Ling, C.; Yang, T.; Chen, X.; Chen, Y.; Deng, H.; Wu, Q.; Chen, J.; Chen, G.-Q. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol. Biofuels 2014, 7, 108. [Google Scholar] [CrossRef]
- Singhaboot, P.; Kaewkannetra, P. A higher in value biopolymer product of polyhydroxyalkanoates (PHAs) synthesized by Alcaligenes latus in batch/repeated batch fermentation processes of sugar cane juice. Ann. Microbiol. 2015, 65, 2081–2089. [Google Scholar] [CrossRef]
- Ienczak, J.L.; Schmidt, M.; Quines, L.K.; Zanfonato, K.; da Cruz Pradella, J.G.; Schmidell, W.; de Aragao, G.M.F. Poly(3-hydroxybutyrate) production in repeated fed-batch with cell recycle using a medium with low carbon source concentration. Appl. Biochem. Biotechnol. 2016, 178, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Ienczak, J.L.; Quines, L.K.; Zanfonato, K.; Schmidell, W.; de Aragão, G.M.F. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in a system with external cell recycle and limited nitrogen feeding during the production phase. Biochem. Eng. J. 2016, 112, 130–135. [Google Scholar] [CrossRef]
- Haas, C.; El-Najjar, T.; Virgolini, N.; Smerilli, M.; Neureiter, M. High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol. 2017, 37, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Gahlawat, G. Enhancing the production of polyhydroxyalkanoate biopolymer by Azohydromonas australica using a simple empty and fill bioreactor cultivation strategy. Chem. Biochem. Eng. Q. 2018, 31, 479–485. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Chen, J.; Wu, Q.; Chen, G.-Q. Open and continuous fermentation: Products, conditions and bioprocess economy. Biotechnol. J. 2014, 9, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, J.; Chen, G.-Q. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 2014, 30, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Van Loosdrecht, M.C.M.; Pot, M.A.; Heijnen, J.J. Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 1997, 35, 41–47. [Google Scholar] [CrossRef]
- Tan, D.; Xue, Y.-S.; Aibaidula, G.; Chen, G.-Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour. Technol. 2011, 102, 8130–8136. [Google Scholar] [CrossRef] [PubMed]
- Wendlandt, K.-D.; Jechorek, M.; Helm, J.; Stottmeister, U. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 2001, 86, 127–133. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.B.T.; Raposo, R.S.; de Almeida, M.C.M.D.; Teresa Cesário, M.; Sevrin, C.; Grandfils, C.; da Fonseca, M.M.R. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour. Technol. 2012, 111, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wan, C. Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnol. Lett. 2017, 39, 1765–1777. [Google Scholar] [CrossRef] [PubMed]
Ref. | Organism | Substrate; Limitation | [Xt] (g L−1) | %PHA (% CDM) | YPHA/S (g g−1) | Qv (g L−1 h−1) | CL* | Contribution |
---|---|---|---|---|---|---|---|---|
[70] | P. putida GPo1 | Octane; N-limited | 37.1 | 33 | - | 0.25 | Air | First HCD process in two-liquid phase media |
[71] | P. putida GPo1 | Octane; N-limited | 40 | 26 | - | 0.34 | ? | Economic evaluation of mcl-PHA production systems |
[63] | P. putida BM01 | OA + glc; N, O2-limited | 35.9 | 65.6 | 0.4 | 0.92 | Air | Enhanced YPHA/OA by co-feeding glucose |
[72] | P. putida GPo1 | OA | 47 | 55 | 0.31 | 0.54 | Air | Studied granule morphology in vivo during fed-batch cultivation |
[73] | P. putida KT2442 | Octanoate; N-limited | 51.5 | 17.4 | - | 0.41 a | +O2 | Closed-loop fed-batch control strategies based on online gas chromatography (GC) measurements |
[74] | P. oleovorans | Octane; O2-limited | 112 | 5 | - | 0.09 | +O2 | Highest [Xt] from octane, but found to be inversely proportional to %PHA |
[75] | P. putida KT2442 | Oleic acid; P-limited | 141 | 51.4 | - | 1.91 | +O2 | Highest known [Xt] and highest Qv from oleic acid |
[76] | P. putida GPo1 | OA; N-limited | 63 | 62 | - | 1 | Air | Highest %PHA (75% CDM) did not correspond to max. Qv |
[69] | P. putida IPT046 | Glc + fructose; P-limited | 50 | 63 | 0.19 | 0.8 | Air | Highest Qv, %PHA from glucose in a native strain |
[55] | P. putida KT2440 | NA; C-limited | 56 | 67 | 0.6 | 1.44 | +O2 | mcl-PHA accumulation under C-limitation |
[48] | P. putida KT2440 | NA; C-limited | 109 | 63 | - | 2.13 | +O2 | Highest Qv yet reported for mcl-PHAs |
[77] | P. putida KT2440 | Corn oil LCFAs, P-limited | 103 | 28.5 | - | 0.61 | +O2 | High Qv from mixed LCFA substrate |
[78] | P. putida KT2440 | NA + UDA; C-limited | 48.1 | 55.8 | 0.5 | 1.09 | +O2 | Control of PHA monomers through feeding |
[56] | P. putida KT2440 | Glc + NA; C-limited | 71 | 56 | 0.66 | 1.44 | +O2 | Improved YPHA/NA by co-feeding glucose |
[59] | P. putida KT2440 | Glc + NA; C-limited | 71.4 | 75.5 | 0.78 | 1.8 | +O2 | Used acrylic acid as a β-oxidation inhibitor to obtain elevated C9 content |
[62] | P. putida CA-3 | Butyric acid + DA; P-limited | 90 | 65 | 0.61 | 1.63 | Air | First use of VFA feedstock, highest Qv without the use of enriched air |
[61] | P. putida KT2440 | Glc + NA; no limitation | 102 | 32 | 0.56 | 0.95 b | Air | Highest [Xt] without enriched air |
[67] | Recombinant P. putida Δgcd | Glc; C-limited | 61.8 | 67 | - | 0.83 | +O2 | Highest %PHA, Qv from glucose |
[60] | P. putida KT2440 | DA, acetic acid, glc (5:1:4); C-limited | 75 | 74 | 0.86 | 1.16 | +O2 | Highest YPHA/S |
[79] | P. putida KT2440 | Oleic acid (80%); N-limited | 125.6 | 54.4 | 0.7 c | 1.01 | Press. (0.3 bar) | Improved YPHA/S coupled to anabolism |
Ref. | Organism; (Product a) | Substrate; Conditions | [Xt] (g L−1) | %PHA (% CDM) | YPHA/S (g g−1) | Qv (g L−1 h−1) | CL* | Contribution |
---|---|---|---|---|---|---|---|---|
[80] | Methylobacterium extorquens | MeOH; N-limited | 233 | 64 | 0.2 | 0.88 | +O2 | Highest %PHB obtained using a methylotroph |
[81] | E. coli XL1-Blue | Glc; O2-limited | 116.6 | 76 | - | 2.11 | +O2 | First HCD fed batch using recombinant E. coli for PHB production |
[57] | Cupriavidus necator NCIMB 11599 | Glc; N-limited | 164 | 76 | 0.3 | 2.42 | Air | Timing of N-limitation and maintaining a residual [glc] of 10–20 g L−1 important |
[82] | Methylobacterium organophilum | MeOH; K-limited | 250 | 52 | 0.19 | 1.86 | +O2 | Highest [Xt] obtained using a methylotroph |
[83] | M. extorquens ATCC 55366 | MeOH; N-limited | 114 | 46 | 0.22 | 0.56 | Air | Highest [Xt], Qv from a methylotroph without using purified O2 |
[54] | A. lata DSM 1123 | Sucrose; none | 142 | 50 | - | 3.97 | +O2 | First HCD process using A. lata; Highest Qv without nutrient limitation |
[84] | C. necator NCIMB 11599 | Glc; P-limited | 281 | 83 | 0.38 | 3.14 | ? | Highest [Xt] obtained in a fed-batch system for PHA production |
[49] | A. lata DSM 1123 | Sucrose; N-limited | 111.7 | 88 | 0.42 | 4.94 b | +O2 | Highest Qv reported in PHA production |
[53] | E. coli XL1-Blue | Glc; O2-limited | 204.3 | 77 | 0.28 | 3.2 | +O2 | Highest [Xt] obtained using E. coli |
[85] | E. coli XL1-Blue | Glc; not stated | 194.1 | 73 | - | 4.63 | ? | Highest Qv reported using E. coli |
[86] | E. coli XL1-Blue | Glc; not stated | 149 | 70 | - | 2.4 | +O2 | |
[87] | E. coli CGSC 6576 | Whey; not stated | 87 | 80 | 0.33 | 1.4 | +O2 | First use of a waste industrial substrate for PHB production using E. coli. |
[58] | Aeromonas hydrophila; PHB-co-PHHx | Oleic acid; P-limited | 95.7 | 45 | 0.51 | 1.01 | +O2 | First HCD process for PHB-co-PHHx production |
[88] | C. necator NCIMB 11599 | Glucose; P-limited | 208 | 67 | - | 3.1 | +O2 | Maintaining residual glc at 9 g L−1 gave highest Qv, PHB |
[89] | Halomonas boliviensis LC1 | MSG; N-limited | 23 | 90 | - | 1.15 | Air | Demonstrated viability of H. boliviensis for HCD production of PHB |
[90] | C. necator DSM 529 | Crude glycerol, N-limited | 76 | 50 | 0.34 | 1.1 | +O2 | Demonstrated high Qv, PHB obtained using crude glycerol |
[91] | Zorbellella denitrificans MW1 | Glycerol; 20 g L−1 NaCl | 81.2 | 66.9 | 0.25 | 1.09 | Air | Highest known YPHB/S using crude glycerol as the sole carbon source |
[92] | C. necator A-04; P(3-HB-co-4-HB) | Fructose + BDO; C/N ratio of 4 then 200 | 112 | 64 | - | 0.76 | Air | Highest obtained [Xt] in P(3-HB-co-4-HB) production |
[93] | Burkholderia sacchari IPT 189 | Sucrose; N, O2 limited | 150 | 42 | 0.22 | 1.7 | ? | Utilized an airlift bioreactor (instead of STR) for HCD production of PHB |
[94] | C. necator DSM 545 | Soybean oil; N, P, metals limiting | 83 | 80 | 0.85 | 2.5 | ? | Highest Qv obtained from edible oils as the sole carbon source. |
[95] | Recombinant C. necator; PHB-co-PHHx | Palm oil; N-limited | 139 | 74 | 0.78 c | 1.07 | +O2 | Amongst the highest [Xt] and Qv for production of PHB-co-PHHx using recombinant C. necator |
[96] | C. necator DSM 545 | Butyric acid; P-limited | 46.7 | 82 | 0.62 d | 0.57 | Press (75 mbar) | Demonstrated highest [Xt], %PHA, and Qv for C. necator grown on butyric acid and favorable impact of coupling residual growth and PHB synthesis on Qv |
[97] | Bacillus megaterium BA-019 | Sugarcane molasses; C/N = 10 | 73 | 43 | - | 1.73 | Air | Highest obtained Qv for PHB production using B. megaterium |
[98] | B. sacchari DSM 17165 | WSH; P-limited | 146 | 72 | 0.22 | 1.6 | Air | Highest Qv from a waste agricultural residue |
[99] | C. necator DSM 7237; PHBV | Crude glycerol and levulinic acid with SFM; C/N = 17.05 | 27.9 | 74.5 | 0.34 | 0.27 | Air | Among the highest %PHBV and [XPHBV] produced using levulinic acid as the precursor |
[100] | C. necator DSM 545 | Glc; N-limited | 128 | 76 | 0.24 | 2.03 | +O2 | Developed fed-batch control strategy independent of the carbon source |
[101] | C. necator H16; PHBV | Mixed VFAs; N-limited | 112.4 | 83 | - | 2.13 | +O2 | Highest [Xt], Qv in production of PHB with poly(3-hydroxyvalerate) (PHBV) |
[102] | C. necator Re2058/pCB113; PHB-co-PHHx | SPO; N-limited | 88.3 | 57 | 0.5 | 1.1 | Air | Demonstrated efficacy of SPO as a substrate for high-Qv production of PHB-co-PHHx |
[103] | B. sacchari DSM 17165; P(3-HB-co-4-HB) | Saccharose + GBL; N-limited | 74.6 | 72 | 0.08 | 1.87 | Air | Highest known Qv for the product P(3-HB-co-4HB) |
Ref. | Feeding Strategy | Results |
---|---|---|
[48] | Exponential feeding of NA: (1) From 0 to 9 h starting at μ = 0.25 h−1 followed by a linearly decaying feeding rate over the next 21 h (2) Quadratic decay in feeding rate (5 to 15 h) with initial μ = 0.45 h−1 followed by a constant feed rate (8.75 g NA L−1 h−1) | (1) [Xt] = 90 g L−1 CDM with 65% PHA 30 h, Qv = 1.9 g L−1 h−1 in 30 h. (2) [Xt] = 109 g L−1 CDM with 63% PHA in 30 h, Qv = 2.13 g L−1 h−1. |
[60] | Exponential feeding of a mixture of DA, acetic acid, and glc (5:1:4) at μ = 0.15 h−1 for 23 h followed by constant feeding rate of 5 g of substrate L−1 h−1 until 40 h. | [Xt] = 75 g L−1 CDM containing 74% PHA in 40 h, Qv = 1.16 g L−1 h−1. |
[61] | Several exponential glc feeding strategies evaluated: (1) At a constant specific growth rate of 0.25 h−1 until dissolved oxygen (DO) limitation (2) At μmax (0.67 h−1) for 0 to 9 h followed by constant feeding when DO became limiting (3) At μmax (0.67 h−1) for 0 to 9 h followed by a linearly increasing feed rate when DO became limiting (4) Same as in (3) but with a constant feed of NA (98 g h−1) imposed at 21 h (65 g L−1 CDM) | (1) [Xt] = 53 g L−1 CDM in 22 h. Ended by DO limitation causing glc accumulation. (2) [Xt] = 43 g L−1 CDM in 18 h. No DO limitation but C limitation slowed growth. (3) 102 g L−1 CDM in 33 h, limited by DO. (4) [Xt] = 98 g L−1 containing 32% PHA obtained in 32 h. |
[112] | (1) Cells allowed to grow for the first 4 to 5 h, pH adjusted with NH4OH (2) At 6 to 7 h, 0.5 mM of ammonium octanoate and 0.05 mM of MgSO4 were fed per hour for 5 h, then feeding exponentially increased to 5 mM of ammonium octanoate and 0.5 mM of MgSO4 per hour for 5 h (3) 1.8 mM of ammonium octanoate and 0.27 mM of MgSO4 were added per hour | [Xt] = 53 g L−1 CDM containing 50% PHA obtained in 48 h, Qv = 0.76 g L−1 h−1. |
[67] | Phase 1: batch operation until 12 h when 20 g L−1 glc initially consumed Phase 2: exponential feeding with μ = 0.2 h−1 until 21 h (50 g L−1 CDM), DO limitation causes glucose accumulation Phase 3: glc fed in response to DO rise above set point to maintain 30 to 35 g L−1 | [Xt] = 61.8 g L−1 CDM containing 67% PHA in 50 h for a Qv of 0.83 g L−1 h−1. |
Ref. | Organism, Product | Conditions | WV (TV) | [Xt] | %PHA | YPHA/S | Qv | CL* |
---|---|---|---|---|---|---|---|---|
(L) | (g L−1) | (% CDM) | (g g−1) | (g L−1 h−1) | ||||
[137] | Aeromonas hydrophila 4AK4, P(HB-co-HHx) | Glc during growth and lauric acid during P-limited accumulation phase | 10,000 (20,000) | 50 | 50 | - | 0.54 | Air |
[138] | P. putida GPp104, P(3-HB-co-3-HV-co-4-HV) | DO-stat feeding of gluconic acid during growth, with levulinic acid during the N-limited accumulation phase | 500 (650) | 19.7 | 50 | - | - | Air |
25 a | 25 | 50 | - | - | Air | |||
[139] | Recombinant E. coli, PHBV | pH-stat feeding of glc + oleic acid + propionic acid. kLa = 108 h−1 in 300 L bioreactor and kLa = 396 h−1 in 30 L bioreactor | 100 (300) | 29.6 | 69 | - | 1.06 | Air |
10 (30) | 42.2 | 70.1 | - | 1.37 | Air | |||
[140] | Recombinant E. coli CGSC 4401, PHB | Whey solution containing 200 g L−1 lactose fed via pH-stat method | 150 (300) | 30 | 67 | - | 1.01 | Air |
10 (30) | 51 | 70 | - | 1.35 | Air | |||
[141] | C. necator NCIMB 11599, PHB | Glc controlled at 9 g L−1 with online glc analyzer | 300 a | 23.4 | 36 | - | 0.18 | Air |
30 a | 49.2 | 45 | - | 1.09 | Air | |||
5 a | 96.4 | 58 | - | 1.03 | Air | |||
[112] | P. putida GPo1 mcl-PHA | Exponential followed by constant feeding of OA with N-limited conditions | 350–400 (650) | 53 | 50 | 0.41 | 0.76 | Air |
[142] | Burkholderia cepacia ATCC 17759, PHB | Biodiesel waste glycerol concentration maintained at 10–40 g L−1 with N-limitation | 200 (400) | 23.6 | 31 | - | 0.06 | Air |
[143] | C. necator H16, PHB | Gluconate with N limitation | 400 (650) | 24.2 | 65.2 | - | 0.23 | Air |
[144] | Halomonas campisalis MCMB-1027, PHB | Batch cultivations using maltose with O2 limitation after 12 h (1–5%). Scale-up based on constant kLa of 14.2–18.4 h−1 | 85 (120) | 1.3 | 49.2 | 0.06 | 0.03 | Press. (0.5 bar) |
8 (14) | 1.7 | 56.2 | 0.09 | 0.04 | Press. (0.5 bar) | |||
[108] | P. putida KT2440, mcl-PHA | Batch growth on grape pomace with subsequent N-limited polymer accumulation on OA and UDA | 100 (300) | 14.2 | 41.1 | 0.79 | 0.1 | Air |
[145] | Halomonas bluephagenesis TD40, P(3-HB-co-4-HB) | Glucose, GBL, waste corn steep liquor fed with PHA synthesis triggered by N-limitation. Scale-up based on similar reactor geometry and kLa | 3500 (5000) | 99.6 | 60 | - | 1.66 | Air |
700 (1000) | 89.5 | 64 | - | 1.58 | Air | |||
4 (7.5) | 81.4 | 74 | - | 1.25 | Air |
Ref. | Organism, Substrate (Polymer) | Conditions | [Xt] (g L−1) | %PHA (% CDM) | YPHA/S (g g−1) | Qv (g L−1 h−1) | Contribution |
---|---|---|---|---|---|---|---|
[149] | A. beijerinckii, glc (PHB) | Single-stage, O2-limited with D = 0.05 h−1 | - | 45 | 0.13 | - | First application of PHA production in a chemostat. |
[165] | C. necator DSM 545, glc + propionate, (PHBV) | Single-stage with N-limited conditions D = 0.15 h−1 | - | 33 | - | - | Demonstrated copolymer production dependent on the ratio of feed components, also first implementation of a two-stage system for improved %PHA. |
[165] | A. lata ATCC 29714, sucrose, propionate (PHBV) | Two-stage with N-limitation, D = 0.15 h−1 | - | 58 | - | - | |
[166] | Hfx. mediterranei DSM 1411, glc (PHB) | Single-stage with D = 0.02 h−1, OTR = 0.4 mmol O2 L−1 h−1 | 3.1 | 48 | 0.03 a | First continuous PHA production using archaea, and first under non-sterile conditions. | |
[159] | P. oleovorans ATCC 29347, OA (mcl-PHA) | Single-stage, various D and C/N ratios tested (D = 0.24 h−1 shown) | 4.2 | 13 | 0.09 | 0.14 a | First mcl-PHA production in continuous culture. Demonstrated little effect of feed C/N ratio on %PHA at D = 0.24 h−1, and showed some dependence of monomer composition on D. |
[158] | P. putida GPo1, n-octane (mcl-PHA) | Single-stage, D = 0.2 h−1 NH4 limiting | 11.6 | 23 | - | 0.58 | First continuous study with two-liquid phase medium and the first to use a continuous platform for enhanced Qv. Demonstrated effect of D on %PHA. |
[157] | C. necator, fructose + pentanoic acid (PHBV) | Single-stage, D = 0.17 h−1, NH4-limiting | - | - | - | 0.31 | First study to use continuous scl-PHA production as a platform for improved Qv. Showed effect of the dilution rate on HV content. |
[154] | P. putida KT2440, oleic acid (mcl-PHA) | Single-stage, O2 limited (DO < 15% AS) with D = 0.1 h−1 | 30 | 23 | - | 0.69 | Highest steady-state [Xt] reported for a continuous system in mcl-PHA production. |
[71] | P. putida GPo1, octane (mcl-PHA) | Single-stage, N limited with D = 0.2 h−1 | 12.4 | 30 | 0.63 | 0.74 | Highest Qv reported for a single-stage continuous PHA production system. |
[167] | P. putida GPo1, OA (mcl-PHA) | Single-stage, D = 0.05–0.4 h−1, C/N ratio = 5–25 (mol mol−1) | - | 56.1 | 0.25 | - | First study exploring dual nutrient limited growth. Results reported at D = 0.1 h−1. |
[163] | C. necator, glc (PHB) | Two-stage, D = 0.075 h−1 and with N-limiting conditions in second stage | 42 | 72.1 | 0.36 | 1.23 | Highest [Xt] and Qv in continuous culture for PHA production. Maximum %PHA and YPHA/S with D = 0.075 h−1 in S2. |
[162] | P. oleovorans ATCC 29347, octane (mcl-PHA) | Two-stage (S1: D = 0.21 h−1 and S2: D = 0.16 h−1) | 71.4 | 63 | - | 1.06 | Highest mcl-PHA productivity to date in a continuous bioreactor system. |
[155] | P. putida GPo1, OA, UDA (mcl-PHA) | Single-stage, D = 0.1–0.4 h−1, dual C- and N-limitation | 1.75 | 23 | - | 0.08 | Monomer composition shown to be a function of D and not the C/N ratio. Preference for the incorporation of aliphatic monomers at lower D. Results reported for C/N = 23 and D = 0.1 h−1. |
[153] | P. putida GPo1, fatty acids, (mcl-PHA) | Two-stage (S1–octanoic acid, S2–undecenoic acid), D = 0.1 h−1 for both S1 and S2, dual C and N limitation | 1.53(S2) | 52.4 (S2) | - | 0.08 a | Synthesis of two mcl-PHA copolymers when fed different fatty acids in S1 (OA) and S2 (UDA). Results shown for D = 0.1 h−1 and C/N = 19.1. |
[164] | C. necator DSM 545, glc (PHB) | Five CSTRs with D = 0.13–0.17 h−1; S1 7.5 L growth reactor (DO = 40%) and S2–S5-3.6 L accumulation reactors (DO = 20%) | 81 (S5) | 77 (S5) | 0.29 | 1.85 | First time more than two in-series CSTRs used for PHA production. Highest reported Qv for any continuous PHA production system. |
[115] | P. putida KT2440, OA + UDA | High-pressure (7 bar) chemostat with DO = 235%, D = 0.15 h−1 and C/N = 12.5 g g−1 | 13.8 | 45.1 | 0.9 | First application of a pressurized chemostat for improved OTR and overall Qv. |
Ref. | Organism | Substrate (Polymer) | Conditions | [Xt] (g L−1) | %PHA (% CDM) | YPHA/S (g g−1) | Qv (g L−1 h−1) | CL* |
---|---|---|---|---|---|---|---|---|
[168] | Recombinant E. coli CGCS 4401 | Whey (PHB) | 2.3-L pH-stat fed batch with constant volume and cell recycle via external membrane module (36.5 h total cultivation time) | 194 | 87 | - | 4.6 | O2 |
[169] | C. necator NRRL B14690 | Fructose (PHB) | Fed batch with 20% volume removal at 27 h and 41 h (two cycles, 68 h total cultivation time) | 49 | 51 | 0.31 | 0.42 | ? |
[170] | Hfx. mediterranei ATCC 33500 | ERB and ECS (1:8) + YE (PHB) | 5-L pH-stat repeated fed batch with 90% withdrawal at end of cycle (three cycles, 118 h total cultivation time) | 140 | 55.6 | - | 3.2 | ? |
[171] | Chelatococcus sp. MW10 | Glucose (PHB) | Fed batch with 20–40% volume removal (two cycles, 265 h total cultivation time) | 115 | 11.8 | 0.11 a | - | Air |
[172] | Recombinant Halomonas campaniensis LS21 | Mixed (proteins, fats, cellulose) (PHB) | Fed batch with 40 mL of culture removed every 12 h and addition of 2 L of substrate (day 25 and 49) and 0.5 L of seawater on day 7 and 34 (65 d total cultivation time) | 69 b | 70 | - | - | ? |
[173] | A. lata TISTR 1403 | Sugar cane juice (PHB) | 2-L repeated batch with 90% withdrawal at the end of each cycle (four cycles, 84 h total cultivation time) | 4.5 | 69 | 0.38 c | 0.21 | ? |
[174] | C. necator DSM 545 | Glucose, fructose (PHB) | 5-L repeated fed batch with periodic 25% withdrawal and complete cell recycle via external membrane (eight cycles, 42 h total cultivation time) | 61.6 | 69 | - | 1.0 | Air |
[175] | C. necator DSM 545 | Glucose + propionic acid (PHBV) | Fed batch with cell recycle via an external membrane, with 1 L periodically withdrawn and replaced with fresh medium (52 h total cultivation time) | 80 | 73 | - | 1.24 | Air |
[176] | C. necator DSM 545 | Dilute glucose (PHB) | 3-L fed batch, continuously added and removed through external membrane after 18 h of batch operation (36 h total cultivation time) | 148 | 76 | 0.33 | 3.1 | Air |
[177] | Azohydromonas australica DSM 1124 | Sucrose (PHB) | 20% volume removed when sucrose concentration reached 8 g L−1, and replenished with fresh medium. Three cycles completed (69 h total cultivation time) | 27.9 | 74 | 0.59 d | 0.29 | Air |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blunt, W.; Levin, D.B.; Cicek, N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers 2018, 10, 1197. https://doi.org/10.3390/polym10111197
Blunt W, Levin DB, Cicek N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers. 2018; 10(11):1197. https://doi.org/10.3390/polym10111197
Chicago/Turabian StyleBlunt, Warren, David B. Levin, and Nazim Cicek. 2018. "Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity" Polymers 10, no. 11: 1197. https://doi.org/10.3390/polym10111197
APA StyleBlunt, W., Levin, D. B., & Cicek, N. (2018). Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers, 10(11), 1197. https://doi.org/10.3390/polym10111197