All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte
Abstract
:1. Introduction
1.1. Oxide Solid Electrolytes
1.2. Succinonitrile (SN) Introduction
2. Experimental Section
2.1. Chemicals
2.2. Synthesis of LATP
2.3. Preparation of Hybrid Solid Electrolytes (HSE) and Hybrid Solid Electrolyte Cathode (HSC)
2.4. Characterizations
3. Results
3.1. Design of Hybrid Solid Electrolytes (HSE) and Hybrid Solid Cathode (HSC)
3.2. Structure of the All-Solid-State Battery System
3.3. Conductivity of the Designed Systems
3.4. Solid Electrolyte Interface (SEI)
3.5. Electrochemical Stability
3.6. Property of the Designed Electrolytes
3.7. Capacity and 1st Coulomb Efficiency of the Designed Coin Cells
4. Discussion and Conclusions
Supplementary Files
Supplementary File 1Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nazri, A. Lithium Batteries Science and Technology; Kluwer Academic Publishers: New York, NY, USA, 2009. [Google Scholar]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Santhanagopalan, S.; Ramadass, P.; Zhang, J. Analysis of internal short-circuit in a lithium ion cell. J. Power Sources 2009, 194, 550–557. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Wakihara, M.; Kadoma, Y.; Kumagai, N.; Mita, H.; Araki, R.; Ozawa, K.; Ozawa, Y. Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte. J. Solid State Electrochem. 2012, 16, 847–855. [Google Scholar] [CrossRef]
- Goodenough, J.B. Ceramic solid electrolytes. Solid State Ion. 1997, 94, 17–25. [Google Scholar] [CrossRef]
- Knauth, P. Inorganic solid Li ion conductors: An overview. Solid State Ion. 2009, 180, 911–916. [Google Scholar] [CrossRef]
- Xu, K. Nanoqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources 2011, 196, 6688–6694. [Google Scholar] [CrossRef]
- Fergus, W.J. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Tanaka, K. Lithium ion conduction in LiTi2(PO4)3. J. Electrochem. Acta 2014, 133, 529–538. [Google Scholar]
- Park, C.G. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide)polymer electrolyte. In Principles and Applications of Lithium Secondary Batteries; Hongpub: Seoul, Korea, 2010; pp. 327–328. [Google Scholar]
- Tong, Y.; Lyu, H.; Xu, Y.; Bishnu, P.T.; Li, P.; Xiao, G.S.; Sheng, D. All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. J. Mater. Chem. A 2018, 6, 14847–14855. [Google Scholar] [CrossRef]
- Zeng, X.X.; Yin, Y.X.; Li, N.W.; Du, W.C.; Guo, Y.G.; Wan, L.J. Reshaping Lithium Plating/Stripping Behavior via Bifunctional Electrolyte for Room Temperature Solid Li Metal Batteries. J. Am. Chem. Soc. 2016, 138, 15825–15828. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 2015, 5, 1401408. [Google Scholar] [CrossRef]
- Bachman, J.C.L.; Muy, S.; Grimaud, A.; Chang, H.; Pour, N. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev. 2015, 116, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Xiayin, Y. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chin. Phys. 2016, B25, 018802. [Google Scholar]
- Goodenough, J.B.; Singh, P. Review—Solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 2015, 162, A2387–A2392. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Porcarelli, L.; Shaplov, A.S.; Salsamendi, M.; Nair, J.R.; Vygodskii, Y.S.; Mecerreyes, D.; Gerbaldi, C. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Appl. Mater. Interfaces 2016, 8, 10350–10359. [Google Scholar] [CrossRef]
- Porcarelli, L.; Aboudzadeh, M.; Rubatat, L.; Nair, J.R.; Shaplovde, A.S.; Gerbaldib, C.; Mecerreyesa, D. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. J. Power Sources 2017, 364, 191–199. [Google Scholar] [CrossRef]
- Porcarelli, L.; Manojkumar, K.; Sardon, H.; Llorente, O.; Shaplovde, A.S.; Gerbaldi, C.; Vijayakrishna, K.; Mecerreyes, D. Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim. Acta 2017, 241, 526–534. [Google Scholar] [CrossRef]
- Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J.R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, J. Polymer Electrolyte Reviews-1; Elsevier Applied Science: London, UK; New York, NY, USA, 1987. [Google Scholar]
- Bailey, F.E., Jr.; Koleske, J.V. Poly(ethylene oxide); Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Wright, P.V. Electrical conductivity in ionic complexes of poly(ethylene oxide). Polym. Int. 1975, 7, 319–327. [Google Scholar] [CrossRef]
- Fenton, D.E. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Armmd, M.B. Polymer solid electrolytes—An overview. Solid State Ion. 1983, 9–10, 745–754. [Google Scholar] [CrossRef]
- Ryu, S.W.; Trapa, P.E.; Olugebefola, S.C.; Gonzalez-Leon, J.A.; Sadoway, D.R.; Mayes, A.M. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J. Electrochem. Soc. 2005, 152, A158–A163. [Google Scholar] [CrossRef]
- Kang, W.C.; Park, H.G.; Kim, K.C.; Ryu, S.W. Synthesis and electrochemical properties of lithium methacrylate-based self-doped gel polymer electrolytes. Electrochim. Acta 2009, 54, 4540–4544. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochemchem. 1987, 225, 1–17. [Google Scholar] [CrossRef]
- Kroka, F.; Dygasa, J.R.; Misztal-Faraja, B.; Florjańczyk, Z.; Bzducha, W. Impedance and polarization studies of new lithium polyelectrolyte gels. J. Power Sources 1999, 81, 766–771. [Google Scholar] [CrossRef]
- Stramare, S.; Weppner, W. Structure and conductivity of B-site substituted (Li,La)TiO3. Mater. Sci. Eng. 2004, B113, 85–90. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Hanc, E.Z.; Molenda, J. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Solid State Ion. 2014, 262, 617–621. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G.J. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. Electrochem. Soc. 1990, 137, 1023–1027. [Google Scholar] [CrossRef]
- Kato, Y. Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10 GeP2S12. Electrochemtry 2012, 10, 749–751. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Liu, X.; Zhong, H.; Xu, H.; Xu, Z.; Shao, H. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.T.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.C.; Lee, S.M.; Choi, J.H.; Jang, S.S.; Kim, D.W. All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes. J. Electrochem. Soc. 2015, 162, A704–A710. [Google Scholar] [CrossRef]
- Liu, W.; Milcarek, R.J.; Falkenstein-Smith, R.L.; Ahn, J. Interfacial Impedance Studies of Multilayer Structured Electrolyte Fabricated With Solvent-Casted PEO10–LiN(CF3SO2)2 and Ceramic Li1.3Al0.3Ti1.7(PO4)3 and Its Application in All-Solid-State Lithium Ion Batteries. Electrochem. Energy Convers. Storage 2016, 13, 021008. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 2016, 301, 47–53. [Google Scholar] [CrossRef]
- Chen, B.; Huang, Z.; Chen, Z.; Zhao, Y.; Xu, Q.; Peng, L.; Chen, S.; Xu, X. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 2016, 210, 905–914. [Google Scholar] [CrossRef]
- Long, S.; Macfarlane, D.R.; Forsyth, M. Fast ion conduction in molecular plastic crystals. Solid State Ion. 2003, 161, 105–112. [Google Scholar] [CrossRef]
- Alarco, P.J.; Abu-Lebdeh, Y.; Armand, M. Highly conductive, organic plastic crystals based on pyrazolium imides. Solid State Ion. 2004, 175, 717–720. [Google Scholar] [CrossRef]
- Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K. Suppression of H2S gas generation from the 75Li2S center dot 25P2S5 glass electrolyte by additives. J. Mater. Sci. 2013, 48, 4137–4142. [Google Scholar] [CrossRef]
- Jung, Y.C.; Park, M.S.; Doh, C.H.; Kim, D.W. Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature. Electrochim. Acta. 2016, 218, 271–277. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Nagao, M.; Hayashi, A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. 2013, 1, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M.J.; Chung, H.Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322. [Google Scholar] [CrossRef]
- Golodnitsky, D.; Strauss, E.; Peled, E.; Greenbaum, S. Review—On Order and Disorder in Polymer Electrolytes. J. Electrochem. Soc. 2015, 162, A2551–A2566. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Jung, Y.C.; Kim, D.H.; Shin, W.C.; Ue, M.; Kim, D.W. Lithium-Ion Cells Assembled with Flexible Hybrid Membrane Containing Li+-Conducting Lithium Aluminum Germanium Phosphate. J. Electrochem. Soc. 2016, 163, A974–A980. [Google Scholar] [CrossRef]
- Camacho-Forero, L.E.; Smith, S.; Bertolini, T.W.; Balbuena, P.B. Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries. J. Phys. Chem. C 2015, 119, 26828–26839. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Hartmann, P.; Leichtweiss, T.; Busche, M.R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. 2013, C117, 21064–21074. [Google Scholar] [CrossRef]
- Fu, Y.; Du, H.; Zhang, S.; Huang, W. XPS characterization of surface and interfacial structure ofsputtered TiNi films on Si substrate. Mater. Sci. Eng. 2005, A403, 25–31. [Google Scholar] [CrossRef]
- Marinado, T.; Hahlin, M.; Jiang, X.; Quintana, M.; Johanesson, E.M.J.; Gabrielsson, E.; Plogmaker, S.; Hagberg, D.P.; Boschloo, G.; Zakeeruddin, S.M.; et al. Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells. J. Phys. Chem. 2010, C114, 11903–11910. [Google Scholar] [CrossRef]
- Campbell, J.L.; Rapp, T. Widths of the atomic K–N7 levels. In Atomic Data and Nuclear Data Tables; Elsevier: New York, NY, USA, 2001; Volume 77, pp. 1–56. [Google Scholar] [CrossRef]
- Takahashi, K.; Ohmura, J.; Im, D.; Lee, D.J.; Zhang, T.; Imanishi, N.; Hirano, A.; Phillipps, M.B.; Takeda, Y.; Yamamoto, O. A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6Al0.4(PO4)3. J. Electrochem. Soc. 2012, 159, A342–A348. [Google Scholar] [CrossRef]
- Geiculescu, O.E.; Rajagopal, R.; Creager, S.E.; DesMarteau, D.D.; Zhang, X.; Fedkiw, P. Transport Properties of Solid Polymer Electrolytes Prepared from Oligomeric Fluorosulfonimide Lithium Salts Dissolved in High Molecular Weight Poly(ethylene oxide). J. Phys. Chem. B 2006, 110, 23130–23135. [Google Scholar] [CrossRef] [PubMed]
- Vallee, A.; Besner, S.; PrudHomme, J. Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behavior. Electrochem. Acta 1992, 37, 1579–1583. [Google Scholar] [CrossRef]
- Sloop, S.E.; Kerr, J.B.; Kinoshita, K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. J. Power Sources 2003, 119, 330–337. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, Z.; Qiu, W.; Guo, Z.; Liu, D.; Qu, D.; Xie, Z.; Tang, H.; Li, J. Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery. J. Memb. Sci. 2018, 563, 380–387. [Google Scholar] [CrossRef]
LATP (g) | PEO * (g) | LiPF6 | LiTFSI | SN (g) | LMO+LCO (g) | EO:Li (Mole ratio) | Ion. Con. @23 °C [S/cm] | Ion. Con. @55 °C [S/cm] | ||
---|---|---|---|---|---|---|---|---|---|---|
HSE | HSE-1 | - | 100 | ● | - | - | - | 8:1 | 1.7 × 10−7 | - |
HSE-2 | 80 | 20 | ● | - | - | - | 8:1 | 1.2 ×1 0−4 | 2.4 × 10−3 | |
HSE-3 | 80 | 20 | - | ● | - | - | 8:1 | 1.5 × 10−4 | 1.4 × 10−3 | |
HSE-4 | 80 | 20 | - | ● | 5 | - | 8:1 | 2.0 × 10−4 | 1.6 × 10−3 | |
HSC | HSC-1 | 12.8 | 12.8 | - | ● | - | 30 + 30 | 10:1 | - | - |
HSC-2 | 12.8 | 12.8 | - | ● | 5 | 30 + 30 | 10:1 | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Kim, S.; Kim, W.; Kim, S.; Ahn, S. All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte. Polymers 2018, 10, 1364. https://doi.org/10.3390/polym10121364
Cho S, Kim S, Kim W, Kim S, Ahn S. All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte. Polymers. 2018; 10(12):1364. https://doi.org/10.3390/polym10121364
Chicago/Turabian StyleCho, Seonggyu, Shinho Kim, Wonho Kim, Seok Kim, and Sungsook Ahn. 2018. "All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte" Polymers 10, no. 12: 1364. https://doi.org/10.3390/polym10121364
APA StyleCho, S., Kim, S., Kim, W., Kim, S., & Ahn, S. (2018). All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte. Polymers, 10(12), 1364. https://doi.org/10.3390/polym10121364