Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Micro/NanoPCMs (i.e., MicroH, MicroEH and MicroHA)
2.3. Preparation of Micro/NanoPCMs MicroPHA
2.4. Extraction Experiment of Micro/NanoPCMs
2.5. Micro/NanoPCMs Characterization
2.6. Encapsulation Efficiency of Micro/NanoPCMs
3. Results and Discussion
3.1. Mechanism of In-Situ Encapsulation
3.2. Morphology of Micro/NanoPCMs Containing Various Phase Change Materials
3.3. Effects of Surfactant on the Surface of Micro/NanoPCMs
3.4. Core-Shell Microstructure of Micro/NanoPCMs Containing Comb-Like Polymeric PCMs
3.5. Thermal Stability of Various PCMs and Micro/NanoPCMs
3.6. Phase Change Properties and Permeability of Various Micro/NanoPCMs
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Iqbal, K.; Sun, D.; Stylios, G.K.; Lim, T.; Corne, D.W. FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials. Fiber Polym. 2015, 16, 2497–2503. [Google Scholar] [CrossRef]
- Li, W.; Ma, Y.-J.; Tang, X.-F.; Jiang, N.; Zhang, R.; Han, N.; Zhang, X.-X. Composition and Characterization of Thermoregulated Fiber Containing Acrylic-Based Copolymer Microencapsulated Phase-Change Materials (MicroPCMs). Ind. Eng. Chem. Res. 2014, 53, 5413–5420. [Google Scholar] [CrossRef]
- Kalnæs, S.E.; Jelle, B.P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy Build. 2015, 94, 150–176. [Google Scholar] [CrossRef]
- Guichard, S.; Miranville, F.; Bigot, D.; Malet-Damour, B.; Beddiar, K.; Boyer, H. A complex roof incorporating phase change material for improving thermal comfort in a dedicated test cell. Renew. Energy 2017, 101, 450–461. [Google Scholar] [CrossRef]
- Jacob, R.; Bruno, F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew. Sustain. Energy Rev. 2015, 48, 79–87. [Google Scholar] [CrossRef]
- Khadiran, T.; Hussein, M.Z.; Zainal, Z.; Rusli, R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Sol. Energy Mater. Sol. Cells 2015, 143, 78–98. [Google Scholar] [CrossRef]
- Do, T.; Ko, Y.G.; Chun, Y.; Choi, U.S. Encapsulation of Phase Change Material with Water-Absorbable Shell for Thermal Energy Storage. ACS Sustain. Chem. Eng. 2015, 3, 2874–2881. [Google Scholar] [CrossRef]
- Şahan, N.; Paksoy, H. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Sol. Energy Mater. Sol. Cells 2017, 159, 1–7. [Google Scholar] [CrossRef]
- Silakhori, M.; Metselaar, H.S.C.; Mahlia, T.M.I.; Fauzi, H.; Baradaran, S.; Naghavi, M.S. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage. Energy Convers. Manag. 2014, 80, 491–497. [Google Scholar] [CrossRef]
- Silakhori, M.; Metselaar, H.S.C.; Mahlia, T.M.I.; Fauzi, H. Preparation and characterisation of microencapsulated paraffin wax with polyaniline-based polymer shells for thermal energy storage. Mater. Res. Innov. 2014, 18. [Google Scholar] [CrossRef]
- Nomura, T.; Sheng, N.; Zhu, C.; Saito, G.; Hanzaki, D.; Hiraki, T.; Akiyama, T. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl. Energy 2017, 188, 9–18. [Google Scholar] [CrossRef]
- Tahan Latibari, S.; Mehrali, M.; Mehrali, M.; Indra Mahlia, T.M.; Cornelis Metselaar, H.S. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Energy 2013, 61, 664–672. [Google Scholar] [CrossRef]
- Li, W.; Song, G.; Tang, G.; Chu, X.; Ma, S.; Liu, C. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 2011, 36, 785–791. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, Y.; Dong, X.; Zhou, Y.; Wang, D. Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers. Chem. Soc. Rev. 2013, 42, 2075–2099. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.X.; Qi, X.K.; Kong, L.; Cui, J.P.; Zhang, X.X.; Shi, H.F. Shape-stabilized phase change materials based on poly(ethylene-graft-maleic anhydride)-g-alkyl alcohol comb-like polymers. Sol. Energy Mater. Sol. Cells 2015, 143, 21–28. [Google Scholar] [CrossRef]
- Meng, J.-Y.; Tang, X.-F.; Zhang, Z.-L.; Zhang, X.-X.; Shi, H.-F. Fabrication and properties of poly(polyethylene glycol octadecyl ether methacrylate). Thermochim. Acta 2013, 574, 116–120. [Google Scholar] [CrossRef]
- Su, J.-F.; Wang, S.-B.; Zhang, Y.-Y.; Huang, Z. Physicochemical properties and mechanical characters of methanol-modified melamine-formaldehyde (MMF) shell microPCMs containing paraffin. Colloid Polym. Sci. 2010, 289, 111–119. [Google Scholar] [CrossRef]
- Li, W.; Zong, J.; Huang, R.; Wang, J.; Wang, N.; Han, N.; Zhang, X. Design, controlled fabrication and characterization of narrow-disperse macrocapsules containing Micro/NanoPCMs. Mater. Des. 2016, 99, 225–234. [Google Scholar] [CrossRef]
- Zhang, X.X.; Fan, Y.F.; Tao, X.M.; Yick, K.L. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J. Colloid Interface Sci. 2005, 281, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Qiu, X.; Lu, L.; Pan, L. Fabrication and characterization of a new enhanced hybrid shell microPCM for thermal energy storage. Energy Convers. Manag. 2016, 126, 673–685. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, S.; Chen, K.; Gao, X.; Chang, P.; Tian, C.; Wang, J.; Huang, Y. Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage. Energy Convers. Manag. 2015, 105, 908–917. [Google Scholar] [CrossRef]
- Fan, Y.F.; Zhang, X.X.; Wu, S.Z.; Wang, X.C. Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane. Thermochim. Acta 2005, 429, 25–29. [Google Scholar] [CrossRef]
Sample | MicroH a | MicroEH b | MicroHA c | MicroPHA d | MicroD e | |
---|---|---|---|---|---|---|
Oil core | ||||||
n-Hexadecane (g) | 15 | - | - | - | ||
ethyl hexadecanoate (g) | - | 15 | - | - | ||
hexadecyl acrylate (g) | - | - | 15 | 15 | ||
AIBN f (g) | - | - | 0.3 | 0.3 | ||
n-dodecanol | 15 |
Sample | H | MicroH | EH | MicroEH | HA | MicroHA | PHA | MicroPHA | MMF |
---|---|---|---|---|---|---|---|---|---|
T0.05 | 161.6 | 196.0 | 174.1 | 212.5 | 196.7 | 176.6 | 346.8 | 218.0 | 205.4 |
T0.1 | 184.1 | 218.5 | 206.6 | 230.0 | 239.2 | 199.1 | 366.8 | 286.6 | 289.4 |
Sample | Tmp a (°C) | △Hm b (J/g) | Tcp c (°C) | △Hc d (J/g) | △H e (J/g) | Tsc f (°C) | Α g (%) |
---|---|---|---|---|---|---|---|
MicroH h | 26.4 | 110.4 | 1.0 | 124.8 | 117.6 | 25.4 | |
*MicroH i | 24.4 | 28.8 | −0.7 | 35.4 | 32.1 | 25.1 | 72.7 |
MicroPHA j | 19.7 | 78.9 | 8.5 | 61.0 | 70.0 | 11.2 | |
*MicroPHA k | 19.2 | 60.5 | 6.8 | 55.5 | 58.0 | 12.4 | 17.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Geng, X.; Huang, R.; Wang, J.; Wang, N.; Zhang, X. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization. Polymers 2018, 10, 172. https://doi.org/10.3390/polym10020172
Li W, Geng X, Huang R, Wang J, Wang N, Zhang X. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization. Polymers. 2018; 10(2):172. https://doi.org/10.3390/polym10020172
Chicago/Turabian StyleLi, Wei, Xiaoye Geng, Rui Huang, Jianping Wang, Ning Wang, and Xingxiang Zhang. 2018. "Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization" Polymers 10, no. 2: 172. https://doi.org/10.3390/polym10020172
APA StyleLi, W., Geng, X., Huang, R., Wang, J., Wang, N., & Zhang, X. (2018). Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization. Polymers, 10(2), 172. https://doi.org/10.3390/polym10020172