Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vohra, V.; Calzaferri, G.; Destri, S.; Pasini, M.; Porzio, W.; Botta, C. Toward White Light Emission through Efficient Two-Step Energy Transfer in Hybrid Nanofibers. ACS Nano 2010, 4, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Qin, C.; Cheng, Y.; Xie, Z.; Geng, Y.; Jing, X.; Wang, F.; Wang, L. White Electroluminescence from a Phosphonate-Functionalized Single-Polymer System with Electron-Trapping Effect. Adv. Mater. 2009, 21, 3682–3688. [Google Scholar] [CrossRef]
- Wen, Y.; Sheng, T.; Zhu, X.; Zhuo, C.; Su, S.; Li, H.; Hu, S.; Zhu, Q.L.; Wu, X. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission. Adv. Mater. 2017, 29, 1700778. [Google Scholar] [CrossRef] [PubMed]
- Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. White Light-Emitting Organic Electroluminescent Devices Using the poly(N-Vinylcarbazole) Emitter Layer Doped with Three Fluorescent Dyes. Appl. Phys. Lett. 1994, 64, 815–817. [Google Scholar] [CrossRef]
- Kamtekar, K.T.; Monkman, A.P.; Bryce, M.R. Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDS). Adv. Mater. 2010, 22, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, C.-F.; Ling, L.-T.; Chen, S. Fluorescent Nanomaterial-Derived White Light-Emitting Diodes: What’s Going on. J. Mater. Chem. C 2014, 2, 4358–4373. [Google Scholar] [CrossRef]
- Kubo, Y.; Nishiyabu, R. White-Light Emissive Materials Based on Dynamic Polymerization in Supramolecular Chemistry. Polymer 2017, 128, 257–275. [Google Scholar] [CrossRef]
- Férey, G. Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev. 2008, 37, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Chen, X.-M. Metal-Organic Frameworks: From Design to Materials. In Metal-Organic Frameworks for Photonic Applications; Chen, B., Qian, G., Eds.; Springer: Berlin, Germany, 2014; pp. 1–26. ISBN 978-3-642-44967-3. [Google Scholar]
- Czaja, A.U.; Trukhan, N.; Müller, U. Industrial Applications of Metal-organic Frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.N.; Zhang, W.X.; Lin, Y.Y.; Zheng, Y.Z.; Chen, X.M. A Dynamic Porous Magnet Exhibiting Reversible Guest-Induced Magnetic Behavior Modulation. Adv. Mater. 2007, 19, 1494–1498. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Liang, W.; Li, S.; Zou, F.; Bhaway, S.M.; Qiang, Z.; Gao, M.; Vogt, B.D.; Zhu, Y. A Nitrogen Doped Carbonized Metal-organic Framework for High Stability Room Temperature Sodium-sulfur Batteries. J. Mater. Chem. A 2016, 4, 12471–12478. [Google Scholar] [CrossRef]
- Liu, X.; Zou, F.; Liu, K.; Qiang, Z.; Taubert, C.J.; Ustriyana, P.; Vogt, B.D.; Zhu, Y. A Binary Metal Organic Framework Derived Hierarchical Hollow Ni3S2/Co9S8 /N-Doped Carbon Composite with Superior Sodium Storage Performance. J. Mater. Chem. A 2017, 5, 11781–11787. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent Metal-Organic Frameworks. Met. Fram. Appl. Catal. Gas Storage 2011, 5, 267–308. [Google Scholar] [CrossRef] [PubMed]
- You, L.-X.; Zhao, B.-B.; Liu, H.-J.; Wang, S.-J.; Xiong, G.; He, Y.-K.; Ding, F.; Joos, J.J.; Smet, P.F.; Sun, Y.-G. 2D and 3D Lanthanide Metal-organic Frameworks Constructed from Three Benzenedicarboxylate Ligands: Synthesis, Structure and Luminescent Properties. CrystEngComm 2018. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Hu, Z.; Wang, G.; Uvdal, K. Coordination Polymers for Energy Transfer: Preparations, Properties, Sensing Applications, and Perspectives. Coord. Chem. Rev. 2015, 284, 206–235. [Google Scholar] [CrossRef]
- Rocha, J.; Carlos, L.D.; Paz, F.A.A.; Ananias, D. Luminescent Multifunctional Lanthanides-Based Metal-organic Frameworks. Chem. Soc. Rev. 2011, 40, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, J.; Zhu, H.; Liu, L.; Feng, Y.; Hu, G.; Yu, X. Dual-Emitting Fluorescence of Eu/Zr-MOF for Ratiometric Sensing Formaldehyde. Sens. Actuators B Chem. 2017, 253, 275–282. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Du, S. Tunable Luminescence and White Light Emission of Mixed Lanthanide-organic Frameworks Based on Polycarboxylate Ligands. J. Mater. Chem. C 2016, 4, 3364–3374. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Wu, M.-F.; Wang, S.-H.; Zheng, F.-K.; Wang, G.-E.; Chen, J.; Xiao, Y.; Wu, A.Q.; Guo, G.-C.; Huang, J.-S. Eu3+-Doped Tb3+ Metal-Organic Frameworks Emitting Tunable Three Primary Colors towards White Light. J. Mater. Chem. C 2013, 1, 4634–4639. [Google Scholar] [CrossRef]
- Müller, M.; Devaux, A.; Yang, C.-H.; De Cola, L.; Fischer, R.A. Highly Emissive Metal-organic Framework Composites by Host–guest Chemistry. Photochem. Photobiol. Sci. 2010, 9, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Dong, H.; Wei, C.; Zhang, W.; Yan, Y.; Zhao, Y.S. Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks. Adv. Mater. 2016, 28, 7424–7429. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.L.; Leong, K.; Allendorf, M.D. Charge-Transfer Guest Interactions in Luminescent MOFs: Implications for Solid-State Temperature and Environmental Sensing. Dalt. Trans. 2012, 41, 8869. [Google Scholar] [CrossRef] [PubMed]
- Horike, S.; Shimomura, S.; Kitagawa, S. Soft Porous Crystals. Nat. Chem. 2009, 1, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Sakata, Y.; Kitagawa, S. Control over Flexibility of Entangled Porous Coordination Frameworks by Molecular and Mesoscopic Chemistries. Chem. Lett. 2013, 42, 570–576. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; Furukawa, S.; Takashima, Y.; López Arbeloa, I.; Kitagawa, S. Charge Transfer and Exciplex Emissions from a Naphthalenediimide-Entangled Coordination Framework Accommodating Various Aromatic Guests. J. Phys. Chem. C 2012, 116, 26084–26090. [Google Scholar] [CrossRef]
- Takashima, Y.; Martínez, V.M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Molecular Decoding Using Luminescence from an Entangled Porous Framework. Nat. Commun. 2011, 2, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinolfo, P.H.; Williams, M.E.; Stern, C.L.; Hupp, J.T. Rhenium-Based Molecular Rectangles as Frameworks for Ligand-Centered Mixed Valency and Optical Electron Transfer. J. Am. Chem. Soc. 2004, 126, 12989–13001. [Google Scholar] [CrossRef] [PubMed]
- Andric, G.; Boas, J.F.; Bond, A.M.; Fallon, G.D.; Ghiggino, K.P.; Hogan, C.F.; Hutchison, J.A.; Lee, M.A.-P.; Langford, S.J.; Pilbrow, J.R.; et al. Spectroscopy of Naphthalene Diimides and Their Anion Radicals. Aust. J. Chem. 2004, 57, 1011. [Google Scholar] [CrossRef]
- Viehbeck, A.; Goldberg, M.J.; Kovac, C.A. Electrochemical Properties of Polyimides and Related Imide Compounds. J. Electrochem. Soc. 1990, 137, 1460–1466. [Google Scholar] [CrossRef]
- Ilmet, I.; Berger, S.A. Molecular Complexes of Two Naphtalic Anhydrides with Aromatic Hydrocarbons. J. Phys. Chem. 1967, 71, 1534–1536. [Google Scholar] [CrossRef]
- Barros, T.C.; Brochsztain, S.; Toscano, V.G.; Filho, P.B.; Politi, M.J. Photophysical Characterization of a 1,4,5,8-Naphthalenediimide Derivative. J. Photochem. Photobiol. A Chem. 1997, 111, 97–104. [Google Scholar] [CrossRef]
- Bhosale, S.; Sisson, A.L.; Talukdar, P.; Fürstenberg, A.; Banerji, N.; Vauthey, E.; Bollot, G.; Mareda, J.; Röger, C.; Würthner, F.; et al. Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers. Science 2006, 313, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, V.; Sola Llano, R.; Furukawa, S.; Takashima, Y.; López Arbeloa, I.; Kitagawa, S. Enhanced Phosphorescence Emission by Incorporating Aromatic Halides into an Entangled Coordination Framework Based on Naphthalenediimide. Chemphyschem 2014, 15, 2517–2521. [Google Scholar] [CrossRef] [PubMed]
Mixture | Proportion | CIE Coordinates (x, y) | ||
---|---|---|---|---|
Powder | Crystals | Powder | Crystals | |
ethyl benzoate: p-xylene: iodobenzene | 5:1:2.6 | 2:1:1 | 0.34, 0.33 | 0.33, 0.35 |
toluene: anisole: iodobenzene | 7:4:2 | 7:4:2 | 0.35, 0.34 | 0.35, 0.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sola-Llano, R.; Martínez-Martínez, V.; Furukawa, S.; Takashima, Y.; López-Arbeloa, I. Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers 2018, 10, 188. https://doi.org/10.3390/polym10020188
Sola-Llano R, Martínez-Martínez V, Furukawa S, Takashima Y, López-Arbeloa I. Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers. 2018; 10(2):188. https://doi.org/10.3390/polym10020188
Chicago/Turabian StyleSola-Llano, Rebeca, Virginia Martínez-Martínez, Shuhei Furukawa, Yohei Takashima, and Iñigo López-Arbeloa. 2018. "Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules" Polymers 10, no. 2: 188. https://doi.org/10.3390/polym10020188
APA StyleSola-Llano, R., Martínez-Martínez, V., Furukawa, S., Takashima, Y., & López-Arbeloa, I. (2018). Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers, 10(2), 188. https://doi.org/10.3390/polym10020188