Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals, Reagents and Solvents
2.1.2. Monomers
2.1.3. Polymer Synthesis
2.2. Methods
3. Results and Discussion
3.1. Polymer Synthesis
3.2. Thermoresponsive Behavior in Water and in Normal Saline Solution (NSS)
3.3. Solubilization Attempts of Hydrophobic Guest by Thermoresponsive Polyethylene Glycol-Polyzwitterion Diblock Copolymers in Water and in Normal Saline Solution
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef]
- Hamley, I.W. Block Copolymers in Solution: Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Gohy, J.-F. Block Copolymer Micelles. Adv. Polym. Sci. 2005, 190, 65–136. [Google Scholar]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef] [PubMed]
- Raffa, P.; Wever, D.A.Z.; Picchioni, F.; Broekhuis, A.A. Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chem. Rev. 2015, 115, 8504–8563. [Google Scholar] [CrossRef] [PubMed]
- Choucair, A.; Eisenberg, A. Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E 2003, 10, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Hayward, R.C.; Pochan, D.J. Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process. Macromolecules 2010, 43, 3577–3584. [Google Scholar] [CrossRef]
- Nicolai, T.; Colombani, O.; Chassenieux, C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 2010, 6, 3111–3118. [Google Scholar] [CrossRef]
- Zhulina, E.B.; Borisov, O.V. Theory of Block Polymer Micelles: Recent Advances and Current Challenges. Macromolecules 2012, 45, 4429–4440. [Google Scholar] [CrossRef]
- Lauber, L.; Santarelli, J.; Boyron, O.; Chassenieux, C.; Colombani, O.; Nicolai, T. pH- and Thermoresponsive Self-Assembly of Cationic Triblock Copolymers with Controlled Dynamics. Macromolecules 2017, 50, 416–423. [Google Scholar] [CrossRef]
- Garnier, S.; Laschewsky, A. New Amphiphilic Diblock Copolymers: Surfactant Properties and Solubilization in Their Micelles. Langmuir 2006, 22, 4044–4053. [Google Scholar] [CrossRef] [PubMed]
- Schaeffel, D.; Kreyes, A.; Zhao, Y.; Landfester, K.; Butt, H.-J.; Crespy, D.; Koynov, K. Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy. ACS Macro Lett. 2014, 3, 428–432. [Google Scholar] [CrossRef]
- Laschewsky, A. Smart ingredients for aqueous formulations: Facts and fancy. SÖFW-J. 2011, 137, 34–40. [Google Scholar]
- Dutertre, F.; Boyron, O.; Charleux, B.; Chassenieux, C.; Colombani, O. Transforming Frozen Self-Assemblies of Amphiphilic Block Copolymers into Dynamic pH-Sensitive Micelles. Macromol. Rapid Commun. 2012, 33, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Strandman, S.; Zhu, X.X. Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog. Polym. Sci. 2015, 42, 154–176. [Google Scholar] [CrossRef]
- Laschewsky, A.; Herfurth, C.; Miasnikova, A.; Stahlhut, F.; Weiss, J.; Wieland, C.; Wischerhoff, E.; Gradzielski, M.; Malo de Molina, P. Stars and Blocks: Tailoring Polymeric Rheology Modifiers for Aqueous Media by Controlled Free Radical Polymerization. ACS Symp. Ser. 2013, 1148, 125–143. [Google Scholar]
- Herfurth, C.; Laschewsky, A.; Noirez, L.; von Lospichl, B.; Gradzielski, M. Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution. Polymer 2016, 107, 422–433. [Google Scholar] [CrossRef]
- Lauber, L.; Colombani, O.; Nicolai, T.; Chassenieux, C. pH-Controlled Rheological Properties of Mixed Amphiphilic Triblock Copolymers. Macromolecules 2016, 49, 7469–7477. [Google Scholar] [CrossRef]
- Papadakis, M.C.; Tsitsilianis, C. Responsive Hydrogels from Associative Block Copolymers: Physical Gelling through Polyion Complexation. Gels 2017, 3, 3. [Google Scholar] [CrossRef]
- Ranger, M.; Jones, M.-C.; Yessine, M.-A.; Leroux, J.-C. From well-defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J. Polym. Sci. Part A 2001, 39, 3861–3874. [Google Scholar] [CrossRef]
- Blanazs, A.; Armes, S.P.; Ryan, A.J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol. Rapid Commun. 2009, 30, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Kelley, E.G.; Albert, J.N.L.; Sullivan, M.O.; Epps, T.H., III. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 2013, 42, 7057–7071. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Chen, Y.; Wang, Y.; Ji, J. Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids Surf. B 2014, 124, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kotsuchibashi, Y.; Ebara, M.; Aoyagi, T.; Narain, R. Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications. Polymers 2016, 8, 380. [Google Scholar] [CrossRef]
- Grimm, O.; Wendler, F.; Schacher, F.H. Micellization of Photo-Responsive Block Copolymers. Polymers 2017, 9, 396. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Xie, Z.; Jing, X.; Bellotti, A.; Gu, Z. Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules 2017, 18, 649–673. [Google Scholar] [CrossRef] [PubMed]
- Trzebicka, B.; Szweda, R.; Kosowski, D.; Szweda, D.; Otulakowski, Ł.; Haladjova, E.; Dworak, A. Thermoresponsive polymer-peptide/protein conjugates. Prog. Polym. Sci. 2017, 68, 35–76. [Google Scholar] [CrossRef]
- Weber, C.; Hoogenboom, R.; Schubert, U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012, 37, 686–714. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid. Commun. 2012, 33, 1898–1920. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Brooks, W.L.A.; Sumerlin, B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013, 42, 7214–7243. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)? Polym. Chem. 2017, 8, 220–232. [Google Scholar] [CrossRef]
- Arotçaréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A. Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity. J. Am. Chem. Soc. 2002, 124, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Aseyev, V.; Tenhu, H.; Winnik, F. Non-ionic Thermoresponsive Polymers in Water. Adv. Polym. Sci. 2011, 242, 29–89. [Google Scholar]
- Hoogenboom, R.; Schlaad, H. Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym. Chem. 2017, 8, 24–40. [Google Scholar] [CrossRef]
- Priest, J.H.; Murray, S.L.; Nelson, R.J.; Hoffman, A.S. Lower critical solution temperatures of aqueous copolymers of N-isopropylacrylamide and other N-substituted acrylamides. ACS Symp. Ser. 1987, 350, 255–264. [Google Scholar]
- Lutz, J.-F. Polymerization of Oligo(Ethylene Glycol) (Meth)Acrylates: Toward a New Generation of Smart Biocompatible Materials. J. Polym. Sci. Part A 2008, 46, 3459–3470. [Google Scholar] [CrossRef]
- Weiss, J.; Li, A.; Wischerhoff, E.; Laschewsky, A. Water-soluble Random and Alternating Copolymers of Styrene Monomers with Adjustable Lower Critical Solution Temperature. Polym. Chem. 2012, 3, 352–361. [Google Scholar] [CrossRef]
- Zhao, X.; Coutelier, O.; Nguyen, H.H.; Delmas, C.; Destarac, M.; Marty, J.-D. Effect of copolymer composition of RAFT/MADIX-derived N-vinylcaprolactam/N-vinylpyrrolidone statistical copolymers on their thermoresponsive behavior and hydrogel properties. Polym. Chem. 2015, 6, 5233–5243. [Google Scholar] [CrossRef]
- Ritter, H.; Stock, A. Synthesis of thermoreversible polymers by aminolysis of poly(methyl 2-(N-acryloylamino)-2-methoxyacetate): Correlations of the lower critical solution temperatures (LCST) with the side group structures and the salt concentration in aqueous systems. Macromol. Rapid Commun. 1994, 15, 271–277. [Google Scholar] [CrossRef]
- Laschewsky, A.; Rekai, E.D.; Wischerhoff, E. Tailoring of Stimuli-Responsive Water-Soluble Acrylamide and Methacrylamide Polymers. Macromol. Chem. Phys. 2001, 202, 276–286. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction. Polymer 2009, 50, 3079–3085. [Google Scholar] [CrossRef]
- Chua, G.B.H.; Roth, P.J.; Duong, H.T.T.; Davis, T.P.; Lowe, A.B. Synthesis and Thermoresponsive Solution Properties of Poly[oligo(ethylene glycol) (meth)acrylamide]s: Biocompatible PEG Analogues. Macromolecules 2012, 45, 1362–1374. [Google Scholar] [CrossRef]
- Kujawa, P.; Segui, F.; Shaban, S.; Diab, C.; Okada, Y.; Tanaka, F.; Winnik, F.M. Impact of End-Group Association and Main-Chain Hydration on the Thermosensitive Properties of Hydrophobically Modified Telechelic Poly(N-isopropylacrylamides) in Water. Macromolecules 2006, 39, 341–348. [Google Scholar] [CrossRef]
- Miasnikova, A.; Laschewsky, A. Influencing the Phase Transition Temperature of Poly(methoxy diethylene glycol acrylate) by Molar Mass, End Groups, and Polymer Architecture. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 3313–3323. [Google Scholar] [CrossRef]
- Sambe, L.; Stoffelbach, F.; Poltorak, K.; Lyskawa, J.; Malfait, A.; Bria, M.; Cooke, G.; Woisel, P. Elaboration of Thermoresponsive Supramolecular Diblock Copolymers in Water from Complementary CBPQT4+ and TTF End-Functionalized Polymers. Macromol. Rapid Commun. 2014, 35, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Meyers, S.R.; Grinstaff, M.W. Biocompatible and Bioactive Surface Modifications for Prolonged In Vivo Efficacy. Chem. Rev. 2012, 112, 1615–1632. [Google Scholar] [CrossRef] [PubMed]
- Vancoillie, G.; Frank, D.; Hoogenboom, R. Thermoresponsive poly(oligo ethylene glycol acrylates). Prog. Polym. Sci. 2014, 39, 1074–1095. [Google Scholar] [CrossRef]
- Badi, N. Non-linear PEG-based thermoresponsive polymer systems. Prog. Polym. Sci. 2017, 66, 54–79. [Google Scholar] [CrossRef]
- Weaver, J.V.M.; Armes, S.P.; Bütün, V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Chem. Commun. 2002, 38, 2122–2123. [Google Scholar] [CrossRef]
- Maeda, Y.; Mochiduki, H.; Ikeda, I. Hydration Changes during Thermosensitive Association of a Block Copolymer Consisting of LCST and UCST Blocks. Macromol. Rapid Commun. 2004, 25, 1330–1334. [Google Scholar] [CrossRef]
- Wang, D.; Wu, T.; Wan, X.; Wang, X.; Liu, S. Purely Salt-Responsive Micelle Formation and Inversion Based on a Novel Schizophrenic Sulfobetaine Block Copolymer: Structure and Kinetics of Micellization. Langmuir 2007, 23, 11866–11874. [Google Scholar] [CrossRef] [PubMed]
- Reinicke, S.; Schmalz, H. Combination of living anionic polymerization and ATRP via “click” chemistry as a versatile route to multiple responsive triblock terpolymers and corresponding hydrogels. Colloid Polym. Sci. 2011, 289, 497–512. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Chang, Y.; Deratani, A.; Quemener, D. “Schizophrenic” Hemocompatible Copolymers via Switchable Thermoresponsive Transition of Nonionic/Zwitterionic Block Self-Assembly in Human Blood. Biomacromolecules 2012, 13, 2849–2858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tang, X.; Wang, T.; Yu, F.; Guo, W.; Pei, M. Thermo-sensitive zwitterionic block copolymers via ATRP. RSC Adv. 2014, 4, 24240–24247. [Google Scholar] [CrossRef]
- Morimoto, N.; Muramatsu, K.; Wazawa, T.; Inoue, Y.; Suzuki, M. Self-Assembled Microspheres Driven by Dipole-Dipole Interactions: UCST-Type Transition in Water. Macromol. Rapid Commun. 2014, 35, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, A.; Shimada, N.; Maruyama, A.; Ishihara, K.; Nakai, K.; Yusa, S.I. Preparation of upper critical solution temperature (UCST) responsive diblock copolymers bearing pendant ureido groups and their micelle formation behavior in water. Soft Matter 2015, 11, 5204–5213. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Li, H.; Feng, S.-T.; Li, X.; Tong, G.; Liu, J.; Quan, C.; Jiang, Q.; Zhang, C.; Li, Z. Self-assembled UCST-Type Micelles as Potential Drug Carriers for Cancer Therapeutics. Macromol. Chem. Phys. 2015, 216, 1014–1023. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, B. Thermoreversible physically crosslinked hydrogels from UCST-type thermosensitive ABA linear triblock copolymers. Polym. Chem. 2016, 7, 6980–6991. [Google Scholar] [CrossRef]
- Yoshimitsu, H.; Korchagina, E.; Kanazawa, A.; Kanaoka, S.; Winnik, F.M.; Aoshima, S. Shape-switching self-assembly of new diblock copolymers with UCST-type and LCST-type segments in water. Polym. Chem. 2016, 7, 2062–2068. [Google Scholar] [CrossRef]
- Doncom, K.E.B.; Willcock, H.; O’Reilly, R.K. The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. Eur. Polym. J. 2017, 87, 497–507. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X.; Han, X.; Liu, H. Dual Thermoresponsive Aggregation of Schizophrenic PDMAEMA-b-PSBMA Copolymer with an Unrepeatable pH Response and a Recycled CO2/N2 Response. Langmuir 2017, 33, 2646–2654. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-T.; Wang, L.; Ji, X.; Liu, L.; Zhao, H. Synthesis of Zwitterionic Diblock Copolymers with Cleavable Biotin Groups at the Junction Points and Fabrication of Bioconjugates by Biotin-Streptavidin Coupling. Macromolecules 2017, 50, 2284–2295. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, X.; Zhao, Y. Diverse Thermoresponsive Behaviors of Uncharged UCST Block Copolymer Micelles in Physiological Medium. Langmuir 2014, 30, 11433–11441. [Google Scholar] [CrossRef] [PubMed]
- Vishnevetskaya, N.S.; Hildebrand, V.; Niebuur, B.-J.; Grillo, I.; Filippov, S.K.; Laschewsky, A.; Müller-Buschbaum, P.; Papadakis, C.M. “Schizophrenic” Micelles from Doubly Thermoresponsive Polysulfobetaine-b-poly(N-isopropylmethacrylamide) Diblock Copolymers. Macromolecules 2017, 50, 3985–3999. [Google Scholar] [CrossRef]
- Hildebrand, V.; Heydenreich, M.; Laschewsky, A.; Möller, H.M.; Müller-Buschbaum, P.; Papadakis, C.M.; Schanzenbach, D.; Wischerhoff, E. “Schizophrenic” self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block. Polymer 2017, 122, 347–357. [Google Scholar] [CrossRef]
- Zhang, Q.; Hoogenboom, R. Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog. Polym. Sci. 2015, 48, 122–142. [Google Scholar] [CrossRef]
- Laschewsky, A. Structures and Synthesis of Zwitterionic Polymers. Polymers 2014, 6, 1544–1601. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef] [PubMed]
- Biehl, P.; von der Lühe, M.; Dutz, S.; Schacher, F.H. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers 2018, 10, 91. [Google Scholar] [CrossRef]
- Monroy Soto, V.M.; Galin, J.C. Poly(sulphopropylbetaines): 2. Dilute solution properties. Polymer 1984, 25, 254–262. [Google Scholar] [CrossRef]
- Köberle, P.; Laschewsky, A.; Lomax, T.D. Interactions of a zwitterionic polysoap and its cationic analog with inorganic salts. Macromol. Chem. Rapid Commun. 1991, 12, 427–433. [Google Scholar] [CrossRef]
- Köberle, P.; Laschewsky, A. Hydrophobically modified zwitterionic polymers: Synthesis, bulk properties, and miscibility with inorganic salts. Macromolecules 1994, 27, 2165–2179. [Google Scholar] [CrossRef]
- Mary, P.; Bendejacq, D.D.; Labeau, M.-P.; Dupuis, P. Reconciling Low- and High-Salt Solution Behavior of Sulfobetaine Polyzwitterions. J. Phys. Chem. B 2007, 111, 7767–7777. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Noy, J.-M.; Lowe, A.B.; Roth, P.J. The synthesis and aqueous solution properties of sulfobutylbetaine (co)polymers: Comparison of synthetic routes and tuneable upper critical solution temperatures. Polym. Chem. 2015, 6, 5705–5718. [Google Scholar] [CrossRef]
- Hildebrand, V.; Laschewsky, A.; Wischerhoff, E. Modulating the solubility of zwitterionic poly((3-methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties. Polym. Chem. 2016, 7, 731–740. [Google Scholar] [CrossRef]
- Hildebrand, V.; Laschewsky, A.; Päch, M.; Müller-Buschbaum, P.; Papadakis, C.M. Effect of the Zwitterion Structure on the Thermo-responsive Behaviour of Poly(Sulfobetaine Methacrylate)s. Polym. Chem. 2017, 8, 310–322. [Google Scholar] [CrossRef]
- Palanisamy, A.; Albright, V.; Sukhishvili, S.A. Upper Critical Solution Temperature Layer-by-Layer Films of Polyamino acid-Based Micelles with Rapid, on-Demand Release Capability. Chem. Mater. 2017, 29, 9084–9094. [Google Scholar] [CrossRef]
- Vasantha, V.A.; Jana, S.; Parthiban, A.; Vancso, J.G. Halophilic polysulfabetaines—Synthesis and study of gelation and thermoresponsive behavior. RSC Adv. 2014, 4, 22596–22600. [Google Scholar] [CrossRef]
- Vasantha, V.A.; Jana, S.; Lee, S.S.-C.; Lim, C.-S.; Teo, S.L.-M.; Parthiban, A.; Vancso, J.G. Dual hydrophilic and salt responsive schizophrenic block copolymers—Synthesis and study of self-assembly behavior. Polym. Chem. 2015, 6, 599–606. [Google Scholar] [CrossRef]
- Vasantha, V.A.; Junhui, C.; Ying, T.B.; Parthiban, A. Salt-Responsive Polysulfabetaines from Acrylate and Acrylamide Precursors: Robust Stabilization of Metal Nanoparticles in Hyposalinity and Hypersalinity. Langmuir 2015, 31, 11124–11134. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Gao, H.; Matyjaszewski, K. Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. Macromolecules 2007, 40, 1789–1791. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Stathatos, E.; Lianos, P.; Laschewsky, A.; Ouari, O.; Van Cleuvenbergen, P. Synthesis of a Hemicyanine Dye Bearing Two Carboxylic Groups and Its Use as a Photosensitizer in Dye-Sensitized Photoelectrochemical Cells. Chem. Mater. 2001, 13, 3888–3892. [Google Scholar] [CrossRef]
- Lunkenheimer, K.; Laschewsky, A.; Warszynski, P.; Hirte, R. On the Adsorption Behavior of Soluble, Surface-Chemically Pure Hemicyanine Dyes at the Air/Water Interface. J. Colloid Interface Sci. 2002, 248, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Budde, H.; Höring, S.; Busse, K.; Kressler, J. Synthesis and Characterization of Poly(ethylene oxide) and Poly(perfluorohexylethyl methacrylate) Containing Triblock Copolymers. Macromol. Chem. Phys. 2002, 203, 2103–2112. [Google Scholar] [CrossRef]
- Sugihara, S.; Armes, S.P.; Lewis, A.L. One-Pot Synthesis of Biomimetic Shell Cross-Linked Micelles and Nanocages by ATRP in Alcohol/Water Mixtures. Angew. Chem. Int. Ed. 2010, 49, 3500–3503. [Google Scholar] [CrossRef] [PubMed]
- Simula, A.; Anastasaki, A.; Haddleton, D.M. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives. Macromol. Rapid Commun. 2016, 37, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.B.; McCormick, C.L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 2002, 102, 4177–4189. [Google Scholar] [CrossRef] [PubMed]
- Terayama, Y.; Kikuchi, M.; Kobayashi, M.; Takahara, A. Well-Defined Poly(sulfobetaine) Brushes Prepared by Surface-Initiated ATRP Using a Fluoroalcohol and Ionic Liquids as the Solvents. Macromolecules 2011, 44, 104–111. [Google Scholar] [CrossRef]
- Ishikawa, T.; Takenaka, A.; Kikuchi, M.; Kobayashi, M.; Takahara, A. Effective Addition of Organic Chloride Salts on Atom Transfer Radical Polymerization in Fluoroalcohols. Macromolecules 2013, 46, 9189–9196. [Google Scholar] [CrossRef]
- Strehmel, V.; Wetzel, H.; Laschewsky, A.; Moldenhauer, E.; Klein, T. Influence of imidazolium-based ionic liquids on the synthesis of amphiphilic copolymers based on n-butylmethacrylate and a zwitterionic methacrylate. Polym. Adv. Technol. 2008, 19, 1383–1390. [Google Scholar] [CrossRef]
- Kowalczuk, A.; Trzcinska, R.; Trzebicka, B.; Müller, A.H.E.; Dworak, A.; Tsvetanov, C.B. Loading of polymer nanocarriers: Factors, mechanisms and applications. Prog. Polym. Sci. 2014, 39, 43–86. [Google Scholar] [CrossRef]
- Vasantha, V.A.; Biying, A.O.; Parthiban, A. Polysulfobetaine bearing tertiary amide between counterions and its applications. J. Appl. Polym. Sci. 2018, 135, 1–10. [Google Scholar]
- Armentrout, R.S.; McCormick, C.L. Water-Soluble Polymers. 77. Amphoteric Cyclocopolymers with Sulfobetaine Units: Phase Behavior in Aqueous Media and Solubilization of p-Cresol in Microdomains. Macromolecules 2000, 33, 2944–2951. [Google Scholar] [CrossRef]
- Anton, P.; Laschewsky, A. Solubilization by Polysoaps. Colloid Polym. Sci. 1994, 272, 1118–1128. [Google Scholar] [CrossRef]
- Anton, P.; Laschewsky, A.; Ward, M.D. Solubilization control by redox-switching of polysoaps. Polym. Bull. 1995, 34, 331–335. [Google Scholar] [CrossRef]
- Min, W.; Zhao, D.; Quan, X.; Sun, D.; Li, L.; Zhou, J. Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier. Colloids Surf. B 2017, 152, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Bonte, N.; Laschewsky, A.; Mayer, B.; Vermylen, V. Homogeneous mixtures of polybetaines with low molecular weight salts. Macromol. Symp. 1996, 102, 273–280. [Google Scholar] [CrossRef]
- Bonte, N.; Laschewsky, A.; Vermylen, V. Hybrid materials made from polymeric betaines and low molar mass salts. Macromol. Symp. 1997, 117, 195–206. [Google Scholar] [CrossRef]
Polymer sample | Monomer X | [M]:[I] a | Conv. [%] | Yield [%] | DPn | Mntheo [kg·mol−1] b | MnNMR [kg·mol−1] c | Mnapp [kg·mol−1] d | Ð |
---|---|---|---|---|---|---|---|---|---|
PEG-b-PSPE-1 | SPE | 100:1 | 83 | 85 | 84 | 28 | 29 | 45 | 1.3 |
PEG-b-PSPE-2 e | SPE | 100:1 | 86 | 74 | 74 | 29 | 26 | 35 | 1.7 |
PEG-b-PSPE-3 f | SPE | 30:1 | ~100 | 70 | 22 | 13 | 11 | 20 | 1.4 |
PEG-b-PSPE-4 f | SPE | 50:1 | ~100 | 80 | 38 | 18 | 16 | 19 | 1.6 |
PEG-b-PSPE-5 f | SPE | 100:1 | ~100 | 83 | 81 | 32 | 28 | 30 | 1.7 |
PEG-b-PSPE-6 f | SPE | 200:1 | ~100 | 73 | 137 | 58 | 43 | 36 | 2.1 |
PEG-b-PSBE-1 | SBE | 100:1 | 73 | 70 | 70 | 26 | 26 | 42 | 1.4 |
PEG-b-PSBE-2 | SBE | 200:1 | ~100 | 91 | 183 | 60 | 59 | 71 | 1.3 |
PEG-b-PZPE-1 | ZPE | 100:1 | n.d. g | 64 | 58 | 23 | 22 | 53 | 1.7 |
Polymer sample | [SPE]:[ZPE] feed | [M]:[I] a | Conv. [%] | Yield [%] | Mntheo b [kg·mol−1] | Mnapp c [kg·mol−1] | Ð | Q d |
---|---|---|---|---|---|---|---|---|
PSPE-1 e | 100:0 | 100:1 | 60 | 43 | 16 | 26 | 1.6 | 0 |
PSPE-2 e,f | 100:0 | 100:1 | 96 | 72 | 27 | 41 | 1.6 | 0 |
PSPE-3 e,g | 100:0 | 100:1 | 96 | 72 | 27 | 32 | 1.5 | 0 |
PZPE-1 e | 0:100 | 50:1 | 80 | 84 | 12 | 19 | 1.3 | 100 |
PZPE-2 e | 0:100 | 100:1 | 60 | n.d. | 18 | 28 | 1.4 | 100 |
PZPE-3 e | 0:100 | 200:1 | 97 | 88 | 57 | 77 | 1.9 | 100 |
PSPE-co-ZPE-1 e | 80:20 | 100:1 | 85 | 80 | 24 | 18 | 1.4 | 18 |
PSPE-co-ZPE-2 e | 50:50 | 100:1 | 90 | 88 | 26 | 23 | 1.5 | 48 |
PSPE-co-ZPE-3 e | 20:80 | 100:1 | 95 | 88 | 28 | 25 | 1.5 | 76 |
PEG-b-P(SPE-co-ZPE)-1 h | 80:20 | 100:1 | ~100 | 84 | 32 | 30 | 1.8 | 18 |
PEG-b-P(SPE-co-ZPE)-2 h | 50:50 | 100:1 | ~100 | 90 | 32 | 35 | 2.5 | 48 |
Polymer sample | Concn. g·L−1 | CPUCST in H2O [°C] | CPLCST in H2O [°C] | CPUCST in NSS [°C] | CPLCST in NSS [°C] |
---|---|---|---|---|---|
PSPE-1 | 30.0 | 23 | - | <0 | - |
PSPE-2 | 30.0 | 18 | - | <0 | - |
PSPE-3 | 30.0 | 22 | - | <0 | - |
PZPE-1 | 3.00 | >100 | - | 47 | - |
PZPE-2 | 3.00 | >100 | - | 60 | - |
PZPE-3 | 3.00 | >100 | - | ~100 | - |
PSPE-co-ZPE-1 | 3.00 | 20 | - | <0 | - |
PSPE-co-ZPE-2 | 3.00 | 62 | - | 22 | - |
PSPE-co-ZPE-3 | 3.00 | 70 | - | 42 | - |
PEG-b-PSPE-1 | 30.0 | 54 | - | <0 | - |
PEG-b-PSPE-2 | 30.0 | 48 | - | <0 | - |
PEG-b-PSPE-3 | 30.0 | 39 | - | <0 | - |
PEG-b-PSPE-4 | 30.0 | 45 | - | <0 | - |
PEG-b-PSPE-5 | 30.0 | 65 | - | <0 | - |
PEG-b-PSPE-6 | 30.0 | 50 | - | <0 | - |
PEG-b-PSBE-1 | 30.0 | 30 | 45 | <0 | 20 |
PEG-b-PSBE-2 | 30.0 | ≥80 | - | <0 | - |
PEG-b-PZPE-1 | 3.00 | >100 | - | 12 | 55 |
PEG-b-P(SPE-co-ZPE)-1 | 3.00 | 43 | - | <0 | - |
PEG-b-P(SPE-co-ZPE)-2 | 3.00 | ~80 | - | 45 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizardo, N.M.; Schanzenbach, D.; Schönemann, E.; Laschewsky, A. Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution. Polymers 2018, 10, 325. https://doi.org/10.3390/polym10030325
Nizardo NM, Schanzenbach D, Schönemann E, Laschewsky A. Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution. Polymers. 2018; 10(3):325. https://doi.org/10.3390/polym10030325
Chicago/Turabian StyleNizardo, Noverra M., Dirk Schanzenbach, Eric Schönemann, and André Laschewsky. 2018. "Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution" Polymers 10, no. 3: 325. https://doi.org/10.3390/polym10030325
APA StyleNizardo, N. M., Schanzenbach, D., Schönemann, E., & Laschewsky, A. (2018). Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution. Polymers, 10(3), 325. https://doi.org/10.3390/polym10030325