Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Foam Preparation
2.3. Testing Procedure
3. Results and Discussion
3.1. Cellular Structure
3.2. Thermal Stability
3.3. Viscoelastic Behavior
3.4. Electrical Conductivity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Antunes, M.; Gedler, G.; Abbasi, H.; Velasco, J.I. Graphene Nanoplatelets as a Multifunctional Filler for Polymer Foams. Mater. Today Proc. 2016, 3, S233–S239. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. Ge Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Zhai, W.; Tao, M.; Ling, J.; Zheng, W. Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Chen, Y.; Ling, J.; Wen, B.; Kim, Y.-W. Fabrication of lightweight, flexible polyetherimide/nickel composite foam with electromagnetic interference shielding effectiveness reaching 103 dB. J. Cell. Plast. 2014, 50, 537–550. [Google Scholar] [CrossRef]
- Li, B.; Olson, E.; Perugini, A.; Zhong, W.-H. Simultaneous enhancements in damping and static dissipation capability of polyetherimide composites with organosilane surface modified graphene nanoplatelets. Polymer 2011, 52, 5606–5614. [Google Scholar] [CrossRef]
- Wu, H.; Drzal, L.T. Graphene nanoplatelet-polyetherimide composites: Revealed morphology and relation to properties. J. Appl. Polym. Sci. 2013, 130, 4081–4089. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Yan, Q.; Zheng, W.-G.; He, Z.; Yu, Z.-Z. Tough Graphene−Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Gedler, G.; Antunes, M.; Velasco, J.I.; Ozisik, R. Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater. Des. 2016, 90, 906–914. [Google Scholar] [CrossRef]
- Gedler, G.; Antunes, M.; Velasco, J.I.; Ozisik, R. Electromagnetic shielding effectiveness of polycarbonate/graphene nanocomposite foams processed in 2-steps with supercritical carbon dioxide. Mater. Lett. 2015, 160, 41–44. [Google Scholar] [CrossRef]
- Lee, L.J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer nanocomposite foams. Compos. Sci. Technol. 2005, 65, 2344–2363. [Google Scholar] [CrossRef]
- Kostopoulos, V.; Vavouliotis, A.; Karapappas, P.; Tsotra, P.; Paipetis, A. Damage Monitoring of Carbon Fiber Reinforced Laminates Using Resistance Measurements. Improving Sensitivity Using Carbon Nanotube Doped Epoxy Matrix System. J. Intell. Mater. Syst. Struct. 2009, 20, 1025–1034. [Google Scholar] [CrossRef]
- Badamshina, E.; Estrin, Y.; Gafurova, M. Nanocomposites based on polyurethanes and carbon nanoparticles: Preparation, properties and application. J. Mater. Chem. A 2013, 1, 6509–6529. [Google Scholar] [CrossRef]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef]
- Tung, V.C.; Chen, L.-M.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Tiwari, R.N.; Matsuoka, Y.; Hashimoto, G.; Rokuta, E.; Chen, Y.-Z.; Chueh, Y.-L.; Yoshimura, M. Low Vacuum Annealing of Cellulose Acetate on Nickel Towards Transparent Conductive CNT–Graphene Hybrid Films. ACS Appl. Mater. Interfaces 2014, 6, 9071–9077. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Tai, N.-H.; Chen, S.-Y.; Chueh, Y.-L. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale 2012, 4, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Song, W.; Jung, M.W.; Kang, M.-A.; Kim, K.; Chang, S.-J.; Lee, S.S.; Lim, J.; Hwang, J.; Myung, S.; et al. Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors. Adv. Mater. 2014, 26, 4247–4252. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Yan, J.; Zhi, L.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M.; Qian, W.; Wei, F. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 2010, 22, 3723–3728. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zheng, R.; Zhao, Y.; Cheng, G. Vapor–Solid Growth of Few-Layer Graphene Using Radio Frequency Sputtering Deposition and Its Application on Field Emission. ACS Nano 2012, 6, 3727–3733. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Kumar, K.; Fisher, F.T.; Yang, E.-H. Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 2012, 23, 15301. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, X.; Wang, J.; Li, R.; Sun, X. Free-standing graphene-carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power Sources 2013, 237, 41–46. [Google Scholar] [CrossRef]
- Chen, S.; Yeoh, W.; Liu, Q.; Wang, G. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon 2012, 50, 4557–4565. [Google Scholar] [CrossRef]
- Maxian, O.; Pedrazzoli, D.; Manas-Zloczower, I. Conductive polymer foams with carbon nanofillers-Modeling percolation behavior. Express Polym. Lett. 2017, 11, 406–418. [Google Scholar] [CrossRef]
- Gedler, G.; Antunes, M.; Velasco, J.I. Enhanced electrical conductivity in graphene-filled polycarbonate nanocomposites by microcellular foaming with sc-CO2. J. Adhes. Sci. Technol. 2016, 30, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separation. eXPRESS Polym. Lett. 2015, 9, 412–423. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Influence of polyamide-imide concentration on the cellular structure and thermo-mechanical properties of polyetherimide/polyamide-imide blend foams. Eur. Polym. J. 2015, 69, 273–283. [Google Scholar] [CrossRef]
- Song, P.A.; Liu, L.; Fu, S.; Yu, Y.; Jin, C.; Wu, Q.; Li, Q. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 2013, 24, 125704. [Google Scholar] [CrossRef] [PubMed]
- Safdari, M.; Al-Haik, M. Electrical conductivity of synergistically hybridized nanocomposites based on graphite nanoplatelets and carbon nanotubes. Nanotechnology 2012, 23, 405202. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Pircheraghi, G.; Monemian, S.A.; Manas-Zloczower, I. Epoxy composites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects. Carbon 2014, 78, 268–278. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Chen, L.; Shan, M.; Tian, X.; Yang, C.; Lv, H.; Qian, X. A facile method to produce graphene oxide-g-poly (l-lactic acid) as a promising reinforcement for PLLA nanocomposites. Chem. Eng. J. 2014, 237, 291–299. [Google Scholar] [CrossRef]
- Sims, G.L.A.; Khunniteekool, C. Cell-size measurement of polymeric foams. Cell. Polym. 1994, 13, 137–146. [Google Scholar]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Enhancing the electrical conductivity of polyetherimide-based foams by simultaneously increasing the porosity and graphene nanoplatelets dispersion. Polym. Compos. 2018. Accepted. [Google Scholar]
- Huxtable, S.T.; Cahill, D.G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M.S.; Siddons, G.; Shim, M. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2003, 2, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Choudhary, V. Effect of multiwall carbon nanotubes on thermomechanical and electrical properties of poly(trimethylene terephthalate). J. Appl. Polym. Sci. 2012, 123, 1548–1556. [Google Scholar] [CrossRef]
- Gedler, G.; Antunes, M.; Realinho, V.; Velasco, J.I. Thermal stability of polycarbonate-graphene nanocomposite foams. Polym. Degrad. Stab. 2012, 97, 1297–1304. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Song, L.; Hu, Y.; Xing, W.; Lu, H. Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos. Sci. Technol. 2011, 72, 1–6. [Google Scholar] [CrossRef]
- Liu, L.; Gu, A.; Fang, Z.; Tong, L.; Xu, Z. The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite. Compos. Part A 2007, 38, 1957–1964. [Google Scholar] [CrossRef]
- Velasco-Santos, C.; Martínez-Hernández, A.L.; Fisher, F.; Ruoff, R.; Castano, V.M. Dynamical-mechanical and thermal analysis of carbon nanotube-methyl-ethyl methacrylate nanocomposites. J. Phys. D Appl. Phys. 2003, 36, 1423–1428. [Google Scholar] [CrossRef]
- Sung, Y.T.; Kum, C.K.; Lee, H.S.; Byon, N.S.; Yoon, H.G.; Kim, W.N. Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 2005, 46, 5656–5661. [Google Scholar] [CrossRef]
- Agarwal, G.; Patnaik, A.; Sharma, R.K. Mechanical and Thermo–Mechanical Properties of Bi-Directional and Short Carbon Fiber Reinforced Epoxy Composites. J. Eng. Sci. Technol. 2014, 9, 590–604. [Google Scholar]
- Ornaghi, H.L.; Bolner, A.S.; Fiorio, R.; Zattera, A.J.; Amico, S.C. Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J. Appl. Polym. Sci. 2010, 118, 887–896. [Google Scholar] [CrossRef]
- Idicula, M.; Malhotra, S.K.; Joseph, K.; Thomas, S. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos. Sci. Technol. 2005, 65, 1077–1087. [Google Scholar] [CrossRef]
- Wu, D.; Lv, Q.; Feng, S.; Chen, J.; Chen, Y.; Qiu, Y.; Yao, X. Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 2015, 95, 380–387. [Google Scholar] [CrossRef]
- Antunes, M.; Velasco, J.I. Multifunctional polymer foams with carbon nanoparticles. Prog. Polym. Sci. 2014, 39, 486–509. [Google Scholar] [CrossRef]
- Antunes, M.; Mudarra, M.; Velasco, J.I. Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams. Carbon 2011, 49, 708–717. [Google Scholar] [CrossRef]
- Ameli, A.; Kazemi, Y.; Wang, S.; Park, C.B.; Pötschke, P. Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos. Part A Appl. Sci. Manuf. 2017, 96, 28–36. [Google Scholar] [CrossRef]
- Ameli, A.; Nofar, M.; Park, C.B.; Pötschke, P.; Rizvi, G. Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 2014, 71, 206–217. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; CRC Press: Boca Raton, FL, USA, 1994; ISBN 1420074792. [Google Scholar]
- Sahimi, M. Applications of Percolation Theory; CRC Press: Boca Raton, FL, USA, 1994; ISBN 0748400761. [Google Scholar]
- Kilbride, B.E.; Coleman, J.N.; Fraysse, J.; Fournet, P.; Cadek, M.; Drury, A.; Hutzler, S.; Roth, S.; Blau, W.J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 2002, 92, 4024–4030. [Google Scholar] [CrossRef]
- Balberg, I.; Anderson, C.H.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 1984, 30, 3933. [Google Scholar] [CrossRef]
- Fraysse, J.; Plane, J. Interplay of Hopping and Percolation in Organic Conducting Blends. Phys. Status Solidi 2000, 273, 273–278. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, G.; Huang, Y.; Ma, Y.; Du, F.; Li, F.; Guo, T.; Chen, Y. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 2007, 45, 821–827. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Lett. 2005, 5, 2131–2134. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J. Nanosci. Nanotechnol. 2005, 5, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Verdejo, R.; Bernal, M.M.; Romasanta, L.J.; Lopez-Manchado, M.A. Graphene filled polymer nanocomposites. J. Mater. Chem. 2011, 21, 3301–3310. [Google Scholar] [CrossRef]
Series | Sample code | Density | CNT (wt %) | GnP (wt %) | Total filler (vol %) |
---|---|---|---|---|---|
Carbon nanotubes (CNT) | 0.1 CNT | 0.32 | 0.1 | 0.0 | 0.06 |
0.5 CNT | 0.31 | 0.5 | 0.0 | 0.30 | |
1 CNT | 0.40 | 1.0 | 0.0 | 0.61 | |
2 CNT | 0.57 | 2.0 | 0.0 | 1.22 | |
Hybrid | 1.5/0.5 | 0.43 | 1.5 | 0.5 | 1.18 |
1/1 | 0.41 | 1.0 | 1.0 | 1.19 | |
0.5/1.5 | 0.31 | 0.5 | 1.5 | 1.21 | |
0/2 | 0.33 | 0.0 | 2.0 | 1.16 |
Sample code | Homogeneity | Cell type | Porosity (%) | Cell size * (μm) | Cell density (Cells/cm3) | |
---|---|---|---|---|---|---|
Nf | N0 | |||||
0.1 CNT | Homogeneous (unimodal) | Closed | 74.8 | Low 23.4 (6.7) | 1.1 × 108 | 4.4 × 108 |
0.5 CNT | Homogeneous (quasi-unimodal) | Slightly inter-connected | 75.7 | Medium 55.3 (19.9) | 8.5 × 106 | 3.2 × 107 |
1 CNT | Heterogeneous (dual) | Partially inter-connected | 69.0 | High 194.6 (41.1) | 1.2 × 107 | 5.2 × 106 |
Low 17.7 (8.3) | ||||||
2 CNT | Homogeneous (unimodal) | Inter-connected | 55.7 | Low 26.9 (19.3) | 5.4 × 107 | 5.1 × 107 |
1.5/0.5 | Heterogeneous (dual) | Partially inter-connected | 66.6 | High 81.0 (29.1) | 5.3 × 107 | 1.5 × 107 |
Low 14.2 (10.1) | ||||||
1/1 | Heterogeneous (dual) | Partially inter-connected | 68.3 | High 84.6 (37.0) | 9.5 × 107 | 1.7 × 107 |
Low 15.6 (9.1) | ||||||
0.5/1.5 | Homogeneous (unimodal) | Closed | 76.1 | Medium 71.2 (24.0) | 4.0 × 106 | 8.8 × 106 |
0/2 | Homogeneous (unimodal) | Closed | 74.3 | Low 33.2 (10.4) | 3.9 × 107 | 1.2 × 108 |
Series | CNT (wt %) | GnP (wt %) | Decomposition temperature (°C) | Residue at 1000 °C (wt %) | ||
---|---|---|---|---|---|---|
Onset | Tmax | 40 wt % Loss | ||||
CNT | 0.1 | 0.0 | 495.6 | 520.6 | 591.0 | 48.6 |
0.5 | 0.0 | 497.5 | 521.0 | 592.2 | 48.8 | |
1.0 | 0.0 | 500.7 | 523.7 | 594.3 | 50.6 | |
2.0 | 0.0 | 505.0 | 526.3 | 617.5 | 51.5 | |
Hybrid | 1.5 | 0.5 | 499.4 | 522.2 | 604.7 | 51.1 |
1.0 | 1.0 | 495.2 | 523.4 | 597.7 | 50.9 | |
0.5 | 1.5 | 505.3 | 526.7 | 606.4 | 51.3 | |
0.0 | 2.0 | 506.9 | 529.8 | 612.6 | 50.8 |
Series | CNT (wt %) | GnP (wt %) | Tg Max tan δ (°C) | Tg Max E’’ (°C) | tan δ Intensity | FWHM in tan δ | E’’ Intensity (MPa) | FWHM in E’’ |
---|---|---|---|---|---|---|---|---|
CNT | 0.1 | 0.0 | 229.1 | 223.5 | 1.56 | 10.6 | 28.1 | 9.0 |
0.5 | 0.0 | 227.3 | 221.0 | 1.86 | 11.0 | 29.9 | 7.8 | |
1.0 | 0.0 | 227.4 | 220.9 | 1.88 | 11.1 | 43.5 | 7.7 | |
2.0 | 0.0 | 226.4 | 221.5 | 1.30 | 11.4 | 73.6 | 7.5 | |
Hybrid | 1.5 | 0.5 | 227.9 | 218.7 | 1.67 | 14.4 | 60.3 | 15.7 |
1.0 | 1.0 | 228.7 | 220.9 | 1.73 | 12.3 | 54.7 | 10.6 | |
0.5 | 1.5 | 226.0 | 218.8 | 1.73 | 12.0 | 44.6 | 7.9 | |
0.0 | 2.0 | 228.6 | 223.3 | 2.03 | 9.5 | 68.4 | 6.1 |
Series | Sample code | σ (S/m) | σcorr (S/m) * |
---|---|---|---|
CNT | 0.1 CNT | 8.7 × 10−12 | 4.5 × 10−12 |
(1.2 × 10−12) | |||
0.5 CNT | 1.2 × 10−3 | 6.4 × 10−4 | |
(2.1 × 10−4) | |||
1 CNT | 5.8 × 10−3 | 3.3 × 10−3 | |
(8.0 × 10−4) | |||
2 CNT | 9.2 × 10−3 | 6.4 × 10−3 | |
(2.5 × 10−3) | |||
Hybrid | 1.5/0.5 | 6.9 × 10−3 | 3.7 × 10−3 |
(1.4 × 10−3) | |||
1/1 | 1.6 × 10−2 | 8.8 × 10−3 | |
(3.5 × 10−3) | |||
0.5/1.5 | 9.6 × 10−4 | 5.9 × 10−4 | |
(1.5 × 10−4) | |||
0/2 | 3.9 × 10−12 | 2.2 × 10−12 | |
(6.1 × 10−13) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, H.; Antunes, M.; Velasco, J.I. Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams. Polymers 2018, 10, 348. https://doi.org/10.3390/polym10040348
Abbasi H, Antunes M, Velasco JI. Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams. Polymers. 2018; 10(4):348. https://doi.org/10.3390/polym10040348
Chicago/Turabian StyleAbbasi, Hooman, Marcelo Antunes, and José Ignacio Velasco. 2018. "Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams" Polymers 10, no. 4: 348. https://doi.org/10.3390/polym10040348
APA StyleAbbasi, H., Antunes, M., & Velasco, J. I. (2018). Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams. Polymers, 10(4), 348. https://doi.org/10.3390/polym10040348