Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Porous MIPs
2.2. Characterization
2.3. Analytical Method
2.4. Reflectance Analysis
3. Results
3.1. Characterization of Silica Particles and Films
3.2. Reflectance Analysis
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.; Liu, Y.; Shen, X.; Chang, Z.; Tang, L.; Dong, W.-F.; Li, M.; He, J.-J. Ultrasensitive Detection of Testosterone Using Microring Resonator with Molecularly Imprinted Polymers. Sensors 2015, 15, 31558–31565. [Google Scholar] [CrossRef] [PubMed]
- Boyce, M.J.; Baisley, K.J.; Clark, E.V.; Warrington, S.J. Are published normal ranges of serum testosterone too high? Results of a cross-sectional survey of serum testosterone and luteinizing hormone in healthy men. BJU Int. 2004, 94, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Bui, B.T.S.; Merlier, F.; Haupt, K. Toward the use of a molecularly imprinted polymer in doping analysis: Selective preconcentration and analysis of testosterone and epitestosterone in human urine. Anal. Chem. 2010, 82, 4420–4427. [Google Scholar]
- Lee, S.H.; Lee, D.H.; Lee, J.A.; Lee, W.Y.; Chung, B.C.; Choi, M.H. Comparative GC-MS based in vitro assays of 5-reductase activity using rat liver S9 fraction. Mass Spectrom. Lett. 2012, 3, 21–24. [Google Scholar] [CrossRef]
- Choi, M.H.; Yoo, Y.S.; Chung, B.C. Measurement of testosterone and pregnenolone in nails using gas chromatography-mass spectrometry. J. Chromatogr. B 2001, 754, 495–501. [Google Scholar] [CrossRef]
- Taieb, J.; Mathian, B.; Patricot, M.; Mathieu, E.; Queyrel, N.; Lacroix, I.; Somma-delpero, C.; Boudou, P. Testosterone Measured by 10 Immunoassays and by Isotope-Dilution Gas Chromatography–Mass Spectrometry in Sera from 116 Men, Women, and Children. Clin. Chem. 2003, 1395, 1381–1395. [Google Scholar] [CrossRef]
- Chen, Y.; Yazdanpanah, M.; Hoffman, B.R.; Diamandis, E.P.; Wong, P. Rapid determination of serum testosterone by liquid chromatography-isotope dilution tandem mass spectrometry and a split sample comparison with three automated immunoassays. Clin. Biochem. 2009, 42, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Vesper, H.W.; Botelho, J.C.; Wang, Y. Challenges and improvements in testosterone and estradiol testing. Asian J. Androl. 2014, 16, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Gavrilovic, I.; Mitchell, K.; Brailsford, A.D.; Cowan, D.A.; Kicman, A.T.; Ansell, R.J. A molecularly imprinted receptor for separation of testosterone and epitestosterone, based on a steroidal cross-linker. Steroids 2011, 76, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lorenzo, C.; Angel, C. Molecular Imprinting: A Historical Perspective. Handbook of Molecularly Imprinted Polymers; A Smither Group Company: Shawbury, UK, 2013. [Google Scholar]
- Peeters, M.; Kobben, S.; Jiménez-Monroy, K.L.; Modesto, L.; Kraus, M.; Vandenryt, T.; Gaulke, A.; van Grinsven, B.; Ingebrandt, S.; Junkers, T.; et al. Thermal detection of histamine with a graphene oxide based molecularly imprinted polymer platform prepared by reversible addition-fragmentation chain transfer polymerization. Sens. Actuators B Chem. 2014, 203, 527–535. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Gu, W.; Sun, L.; Zhang, F.; Ling, Y.; Chu, X.; Wang, D. Study on the molecularly imprinted polymers with methyl-testosterone as the template. Talanta 2010, 81, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Ricanyová, J.; Gadzala-Kopciuch, R.; Reiffova, K.; Bazel, Y.; Buszewski, B. Molecularly imprinted adsorbents for preconcentration and isolation of progesterone and testosterone by solid phase extraction combined with HPLC. Adsorption 2010, 16, 473–483. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, W.; Huang, M.; Zhang, L. Preparation and application of solid-phase microextraction fiber based on molecularly imprinted polymer for determination of anabolic steroids in complicated samples. J. Chromatogr. A 2010, 1217, 7461–7470. [Google Scholar] [CrossRef] [PubMed]
- Bui, B.T.S.; Haupt, K. Preparation and evaluation of a molecularly imprinted polymer for the selective recognition of testosterone-application to molecularly imprinted sorbent assays. J. Mol. Recognit. 2011, 24, 1123–1129. [Google Scholar]
- Zhou, C.; Wang, T.; Liu, J.; Guo, C.; Peng, Y.; Bai, J.; Liu, M.; Dong, J.; Gao, N.; Ning, B.; et al. Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol. Analyst 2012, 137, 4469–4474. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wu, X.; Peng, H.; Fu, L.; Song, X.; Li, J.; Xiong, H.; Chen, L. Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol A. Talanta 2018, 176, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, S.; Qian, C.; Wu, Q.; He, J. Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties. J. Appl. Polym. Sci. 2016, 133, 43191. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, H.; Li, J.; Li, Y.; Xiong, H.; Chen, L. Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology. New J. Chem. 2017, 41, 10174–10180. [Google Scholar] [CrossRef]
- Peng, H.; Wang, S.; Zhang, Z.; Xiong, H.; Li, J.; Chen, L.; Li, Y. Molecularly Imprinted Photonic Hydrogels as Colorimetric Sensors for Rapid and Label-free Detection of Vanillin. J. Agric. Food Chem. 2012, 60, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Xu, S.; Chen, L.; Zhou, N.; Xiong, H.; Peng, H. Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. J. Mater. Chem. 2011, 21, 19267–19274. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- De Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. 2016, 733, 12039. [Google Scholar] [CrossRef]
- Jiang, P.; Bertone, J.F.; Hwang, K.S.; Colvin, V.L. Single-Crystal Colloidal Multilayers of Controlled Thickness. Chem. Mater. 1999, 11, 2132–2140. [Google Scholar] [CrossRef]
- Riddick, J.; Bunger, W.; Sakano, T. Techniques of Chemistry: Organic Solvents, 4th ed.; John Wiley and Sons: New York, NY, USA, 1985; Volume II. [Google Scholar]
- Serjeant, E. Ionisation Constants of Organic Acids in Aqueous Solution; Pergamon: New York, NY, USA, 1979. [Google Scholar]
- Kibechu, R.W.; Mamo, M.A.; Msagati, T.A.M.; Sampath, S.; Mamba, B.B. Synthesis and application of reduced graphene oxide and molecularly imprinted polymers composite in chemo sensor for trichloroacetic acid detection in aqueous solution. Phys. Chem. Earth 2014, 76–78, 49–53. [Google Scholar] [CrossRef]
- Betatache, A.; Lagarde, F.; Sanglar, C.; Bonhomme, A.; Leonard, D.; Jaffrezic-Renault, N. Gold Electrodes Modified with Molecular Imprinted Acrylate Polymer for Impedimetric Determination of Testosterone. Sens. Transducers J. 2014, 27, 92–99. [Google Scholar]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Q.; Lin, F.-Y.; Yu, L.-P. A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 2012, 137, 3502–3509. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mub, Z.; Liu, R.; Pu, Y.; Yin, L. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chem. 2013, 141, 3947–3953. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tao, C.; Lin, C.; Shen, D.; Li, G. Label-Free Colorimetric Detection of Trace Atrazine in Aqueous Solution by Using Molecularly Imprinted Photonic Polymers. Chemistry 2008, 14, 11358–11368. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Li, J.; Lan, Y.; Zhang, G.; Zhang, D.; Li, G. Label-free detection and discrimination of poly-brominated diphenylethers using molecularly imprinted photonic cross-reactive sensor arrays. Chem. Commun. 2014, 50, 14133–14136. [Google Scholar] [CrossRef] [PubMed]
Concentration (ppm) | RC 1 (mg/g) | IE | |
---|---|---|---|
MAA | 1 | 0.21 | 1.23 |
5 | 0.51 | 1.1 | |
10 | 0.9 | 1.5 | |
AA | 1 | 0.22 | 1.71 |
5 | 0.98 | 2.13 | |
10 | 2 | 2.77 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadhem, A.J.; Xiang, S.; Nagel, S.; Lin, C.-H.; Fidalgo de Cortalezzi, M. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers 2018, 10, 349. https://doi.org/10.3390/polym10040349
Kadhem AJ, Xiang S, Nagel S, Lin C-H, Fidalgo de Cortalezzi M. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers. 2018; 10(4):349. https://doi.org/10.3390/polym10040349
Chicago/Turabian StyleKadhem, Abbas J., Shuting Xiang, Susan Nagel, Chung-Ho Lin, and Maria Fidalgo de Cortalezzi. 2018. "Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples" Polymers 10, no. 4: 349. https://doi.org/10.3390/polym10040349
APA StyleKadhem, A. J., Xiang, S., Nagel, S., Lin, C. -H., & Fidalgo de Cortalezzi, M. (2018). Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers, 10(4), 349. https://doi.org/10.3390/polym10040349