Characterization and Research on Mechanical Properties of Bamboo Plastic Composites
Abstract
:1. Introduction
2. Essential Work of Fracture (EWF) Theory
3. Materials and Methods
3.1. Materials and Preparation
3.2. BPCs Manufacturing
3.3. BPF/BRF/WM Characterization
3.4. Mechanical Testing and Characterization of the BPCs
4. Results and Discussion
4.1. BPF Characterization
4.2. Mechanical Properties of BPCs
4.3. EWF Analysis of Impact Test Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Matini, B.H.; Ashori, A.; Tarmian, A.; Tajvidi, M. Impacts of wood preservative treatments on some physico-mechanical properties of wood flour/high density polyethylene composites. Constr. Build. Mater. 2012, 35, 246–250. [Google Scholar] [CrossRef]
- Ashori, A. Wood-plastic composites as promising green-composites for automotive industries. Bioresour. Techol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Cheung, H.Y.; Ho, M.P.; Lau, K.T.; Cardona, F.; Hui, D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009, 40, 655–663. [Google Scholar] [CrossRef]
- Li, X.; Lei, B.; Lin, Z.; Huang, L.; Tan, S.; Cai, X. The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater. Des. 2014, 53, 419–424. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003, 63, 375–387. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. [Google Scholar] [CrossRef]
- Cui, Y.; Bahman, N.; Stephen, L.; Moe, C.; Tao, J. Glass fiber/wood plastic hybrid composites and their synergistic reinforcing effects. Polym. Mater. Sci. Eng. 2006, 22, 231–234. [Google Scholar]
- Basiji, F.; Safdari, V.; Nourbakhsh, A.; Pilla, S. The effects of fiber length and fiber loading on the mechanical properties of wood-plastic (polypropylene) composites. Turk. Agric. For. 2010, 34, 191–196. [Google Scholar]
- Chollakup, R.; Smitthipong, W.; Kongtud, W.; Tantatherdtam, R. Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): Effect of fiber surface treatment and fiber content. J. Adhes. Sci. Technol. 2013, 27, 1290–1300. [Google Scholar] [CrossRef]
- He, S.; Zhou, L.; He, H. Preparation and properties of wood plastic composites based on tea residue. Polym. Compos. 2016, 36, 2265–2274. [Google Scholar] [CrossRef]
- Ebadi, M.; Farsi, M.; Narchin, P.; Madhoushi, M. The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood-plastic composites. J. Thermoplast. Compos. Mater. 2015, 29, 1–10. [Google Scholar] [CrossRef]
- Kajaks, J.; Kalnins, K.; Matvejs, J. Rheological Properties of Wood-Plastic Composites Based on Polypropylene and Birch Wood Plywood Production Residues. Key Eng. Mater. 2018, 762, 226–230. [Google Scholar] [CrossRef]
- Koohestani, B.; Ganetri, I.; Yilmaz, E. Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Compos. Part B Eng. 2017, 111, 103–111. [Google Scholar] [CrossRef]
- Keskisaari, A.; Kärki, T. Utilization of Industrial Wastes from Mining and Packaging Industries in Wood-Plastic Composites. J. Polym. Environ. 2018, 26, 1504–1510. [Google Scholar] [CrossRef]
- Effah, B.; Reenen, A.V.; Meincken, M. Mechanical properties of wood-plastic composites made from various wood species with different compatibilisers. Eur. J. Wood Prod. 2018, 76, 57–68. [Google Scholar] [CrossRef]
- Hristozov, D.; Wroblewski, L.; Sadeghian, P. Long-term tensile properties of natural fibre-reinforced polymer composites: Comparison of flax and glass fibres. Compos. Part B Eng. 2016, 95, 82–95. [Google Scholar] [CrossRef]
- Kalagi, G.R.; Patil, R.; Nayak, N. Experimental Study on Mechanical Properties of Natural Fiber Reinforced Polymer Composite Materials for Wind Turbine Blades. Mater. Today: Proc. 2018, 5, 2588–2596. [Google Scholar] [CrossRef]
- Kim, B.J.; Huang, R.; Han, J.; Lee, S.; Wu, Q. Mechanical and morphological properties of coextruded wood plastic composites with glass fiber-filled shell. Polym. Compos. 2016, 37, 824–834. [Google Scholar] [CrossRef]
- He, G.; Zhang, F.; Huang, L.; Li, J.; Guo, S. Evaluation of the fracture behaviors of multilayered propylene–ethylene copolymer/polypropylene homopolymer composites with the essential work of fracture. J. Appl. Polym. Sci. 2014, 131, 40574. [Google Scholar] [CrossRef]
- Bárány, T.; Czigány, T.; Karger-Kocsis, J. Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: A review. Prog. Polym. Sci. 2010, 35, 1257–1287. [Google Scholar] [CrossRef]
- Yilmaz, S.; Yilmaz, T.; Kahraman, B. Essential work of fracture analysis of short glass fiber and/or calcite reinforced ABS/PA6 composites. Polym. Eng. Sci. 2014, 54, 540–550. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, D.; Wang, G.; Cheng, H. Mechanical and thermal properties of bamboo pulp fiber reinforced polyethylene composites. Bioresources 2014, 9, 4117–4127. [Google Scholar] [CrossRef]
- Biswas, S.; Patnaik, A.; Kaundal, R. Effect of Red Mud and Copper Slag Particles on Physical and Mechanical Properties of Bamboo-Fiber-Reinforced Epoxy Composites. Adv. Mech. Eng. 2012, 4, 1–6. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, C.; Wang, G.; Ren, W.; Cheng, H. Effect of bamboo shavings content on mechanical and thermal properties of bamboo filler-high density polyethylene composites. Mater. Rev. Res. 2015, 29, 47–52. [Google Scholar] [CrossRef]
- Mai, Y.W.; Cotterell, B. The essential work of fracture for tearing of ductile metals. Int. J. Fract. 1984, 24, 229–236. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Cheng, H.T. Properties of single bamboo fibers isolated by different chemical methods. Wood Fiber Sci. 2011, 43, 111–120. [Google Scholar]
- Xian, Y.; Chen, F.; Li, H.; Wang, G.; Cheng, H.T.; Cao, S.P. The effect of moisture on the modulus of elasticity of several representative individual cellulosic fibers. Fibers Polym. 2015, 16, 1595–1599. [Google Scholar] [CrossRef]
- Yasmin, A.; Daniel, I.M. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer. 2004, 45, 8211–8219. [Google Scholar] [CrossRef]
- Xian, Y.; Li, H.; Wang, C.; Wang, G.; Ren, W.; Cheng, H. Effect of White Mud as a Second Filler on the Mechanical and Thermal Properties of Bamboo Residue Fiber/Polyethylene Composites. Bioresources 2015, 10, 4263–4276. [Google Scholar] [CrossRef]
- Shi, X.B.; Wang, J.L.; Cai, X.P.; Zhang, S. Role of calcium carbonate morphology on thermal and mechanical properties of HDPE. Plast. Rubber Compos. 2013, 42, 302–307. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yang, Q.B. Experimental Study on Ductility and Toughness of HDPE-Pipe Concrete. J. Build. Mater. 2009, 12, 394–397. [Google Scholar]
- Yang, H.S.; Gardner, D.J.; Nader, J.W. Morphological properties of impact fracture surfaces and essential work of fracture analysis of cellulose nanofibril-filled polypropylene composites. J. Appl. Polym. Sci. 2013, 128, 3064–3076. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, C.; Li, H.; Deng, J.; Wang, G.; Cheng, H. Influences of white mud content on the mechanical properties of bamboo filler /high density polyethylene composites. Polym. Mater. Sci. Eng. 2016, 32, 100–104. [Google Scholar] [CrossRef]
Sample | BPF (%) | BRF (%) | WM (%) | HDPE (%) | MAPE (%) | PE-Wax (%) |
---|---|---|---|---|---|---|
1 | 20 | 30 | 0 | 45 | 4 | 1 |
2 | 30 | 20 | 0 | 45 | 4 | 1 |
3 | 40 | 10 | 0 | 45 | 4 | 1 |
4 | 0 | 50 | 0 | 45 | 4 | 1 |
5 | 50 | 0 | 6 | 39 | 4 | 1 |
6 | 50 | 0 | 10 | 35 | 4 | 1 |
7 | 50 | 0 | 14 | 31 | 4 | 1 |
Sample | Length (μm) | Diameter (μm) | L/D Ratio |
---|---|---|---|
BPF | 1146.61 (628.12) | 17.49 (7.86) | 63.10 (10.77) |
Fiber | Cross-Sectional Area (μm2) | Fracturing Load (mN) | Tensile Strength (MPa) | Modulus (GPa) | Elongation at Break (%) |
---|---|---|---|---|---|
BPF | 183.51 (17.68) | 84.96 (19.54) | 508.49 (162.27) | 6.73 (5.11) | 7.44 (0.77) |
CaCO3 | SiO2 | Acid-Insoluble | CaO | NaOH | Fe2O3 | Other |
---|---|---|---|---|---|---|
87.97 | 2.82 | 1.76 | 1.07 | 0.7 | 0.3 | 3.4 |
Specimen | we (kJ/m2) | Impact Strength (kJ/m2) | R2 | |
---|---|---|---|---|
BRF-HDPE | 4.08 | 0.26 | 7.07 | 0.9485 |
BPF-20% | 3.50 | 0.32 | 6.80 | 0.9360 |
BPF-30% | 4.53 | 0.34 | 7.97 | 0.8521 |
BPF-40% | 4.97 | 0.38 | 8.65 | 0.8540 |
WM-6% | 3.28 | 0.31 | 6.17 | 0.8072 |
WM-10% | 2.86 | 0.21 | 4.67 | 0.8966 |
WM-14% | 2.75 | 0.12 | 4.28 | 0.8776 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, Y.; Ma, D.; Wang, C.; Wang, G.; Smith, L.; Cheng, H. Characterization and Research on Mechanical Properties of Bamboo Plastic Composites. Polymers 2018, 10, 814. https://doi.org/10.3390/polym10080814
Xian Y, Ma D, Wang C, Wang G, Smith L, Cheng H. Characterization and Research on Mechanical Properties of Bamboo Plastic Composites. Polymers. 2018; 10(8):814. https://doi.org/10.3390/polym10080814
Chicago/Turabian StyleXian, Yu, Dongjuan Ma, Cuicui Wang, Ge Wang, Leemiller Smith, and Haitao Cheng. 2018. "Characterization and Research on Mechanical Properties of Bamboo Plastic Composites" Polymers 10, no. 8: 814. https://doi.org/10.3390/polym10080814
APA StyleXian, Y., Ma, D., Wang, C., Wang, G., Smith, L., & Cheng, H. (2018). Characterization and Research on Mechanical Properties of Bamboo Plastic Composites. Polymers, 10(8), 814. https://doi.org/10.3390/polym10080814