Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Amino-Sulfo-Bifunctionalized GO (NSGO)
2.3. Preparation of the Membranes
2.4. Characterizations
3. Results and Discussion
3.1. Characterization of NSGO
3.2. Characterization of the Membranes
3.3. SEM Images of the Membranes
3.4. Thermal and Mechanical Stabilities of the Membranes
3.5. Ion Exchange Capacities (IEC), Water Uptake (WU), and Swelling Ratio (SR) of the Membranes
3.6. Proton Conductivity of the Membranes
3.7. Methanol Permeability and Selectivity of the Membranes
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Radenahmad, N.; Afif, A.; Petra, P.I.; Rahman, S.M.H.; Eriksson, S.; Azad, A.K. Proton-conducting electrolytes for direct methanol and direct urea fuel cells-A state-of-the-art review. Renew. Sustain. Energy Rev. 2016, 57, 1347–1358. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Zakil, F.A.; Kamarudin, S.K.; Basri, S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renew. Sustain. Energy Rev. 2016, 65, 841–852. [Google Scholar] [CrossRef]
- Bakangura, E.; Wu, L.; Ge, L.; Yang, Z.; Xu, T. Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Prog. Polym. Sci. 2016, 57, 103–152. [Google Scholar] [CrossRef]
- Branco, C.M.; Sharma, S.; de Camargo Forte, M.M.; Steinberger-Wilckens, R. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells. J. Power Sources 2016, 316, 139–159. [Google Scholar] [CrossRef]
- Lavorgna, M.; Gilbert, M.; Mascia, L.; Mensitieri, G.; Scherillo, G.; Ercolano, G. Hybridization of Nafion membranes with an acid functionalised polysiloxane: Effect of morphology on water sorption and proton conductivity. J. Membr. Sci. 2009, 330, 214–226. [Google Scholar] [CrossRef]
- Zhang, Z.; Désilets, F.; Felice, V.; Mecheri, B.; Licoccia, S.; Tavares, A.C. On the proton conductivity of Nafion–Faujasite composite membranes for low temperature direct methanol fuel cells. J. Power Sources 2011, 196, 9176–9187. [Google Scholar] [CrossRef] [Green Version]
- Cozzi, D.; de Bonis, C.; D’Epifanio, A.; Mecheri, B.; Tavares, A.C.; Licoccia, S. Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J. Power Sources 2014, 248, 1127–1132. [Google Scholar] [CrossRef]
- Liu, D.; Peng, J.; Li, Z.; Liu, B.; Wang, L. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes. J. Power Sources 2018, 378, 451–459. [Google Scholar] [CrossRef]
- Pandey, R.P.; Shukla, G.; Manohar, M.; Shahi, V.K. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv. Colloid Interface Sci. 2017, 240, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, K.; Karim, M.R.; Ogata, C.; Tateishi, H.; Funatsu, A.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Proton conductivities of graphene oxide nanosheets: Single, multilayer, and modified nanosheets. Angew. Chem. Int. Ed. 2014, 53, 6997–7000. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.H.; Wu, R.; Xu, J.B.; Luo, Z.; Zhao, T.S. A monolayer graphene e Nafion sandwich membrane for direct methanol fuel cells. J. Power Sources 2016, 311, 188–194. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Zhang, H.; Wu, W.; Liu, J.; Wang, J. Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. J. Power Sources 2015, 286, 445–457. [Google Scholar] [CrossRef]
- Feng, M.; Huang, Y.; Cheng, Y.; Liu, J.; Liu, X. Rational design of sulfonated poly(ether ether ketone) grafted graphene oxide-based composites for proton exchange membranes with enhanced performance. Polymer 2018, 144, 7–17. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, J. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2014, 2, 9548–9558. [Google Scholar] [CrossRef]
- Wang, J.; Bai, H.; Zhang, J.; Zhao, L.; Chen, P.; Li, Y.; Liu, J. Acid–base block copolymer brushes grafted graphene oxide to enhance proton conduction of polymer electrolyte membrane. J. Membr. Sci. 2017, 531, 47–58. [Google Scholar] [CrossRef]
- Feng, M.; Huang, Y.; Wei, M.; Liu, X. Sulfonated poly(arylene ether nitrile)-based hybrid membranes containing amine-functionalized GO for constructing long-range ionic nanochannels. Int. J. Hydrogen Energy 2018, 43, 11214–11222. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, T.; Zhang, X.; Zhang, W.; Liu, X. Novel composite proton exchange membrane with long-range proton transfer channels constructed by synergistic effect between acid and base functionalized graphene oxide. Polymer 2018, 149, 305–315. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, X.; Fu, Y.; Manthiram, A. Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J. Mater. Chem. 2012, 22, 24862–24869. [Google Scholar] [CrossRef]
- Gao, Y.; Robertson, G.P.; Guiver, M.D.; Mikhailenko, S.D.; Li, X.; Kaliaguine, S. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage. Polymer 2006, 47, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; You, Y.; Zheng, P.; Liu, J.; Jia, K.; Huang, Y.; Liu, X. Low-swelling proton-conducting multi-layer composite membranes containing polyarylene ether nitrile and sulfonated carbon nanotubes for fuel cells. Int. J. Hydrogen Energy 2016, 41, 5113–5122. [Google Scholar] [CrossRef]
- Feng, M.; Cheng, T.; Huang, X.; Huang, Y.; Liu, X. Nitrile functionalized graphene oxide for highly selective sulfonated poly(arylene ether nitrile)-based proton-conducting membranes. RSC Adv. 2017, 7, 2971–2978. [Google Scholar] [CrossRef] [Green Version]
- Moon, G.; Park, Y.; Kim, W.; Choi, W. Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate. Carbon 2011, 49, 3454–3462. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J. Phys. Chem. C 2013, 117, 25865–25875. [Google Scholar] [CrossRef]
- Beydaghi, H.; Javanbakht, M.; Kowsari, E. Synthesis and characterization of poly(vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind. Eng. Chem. Res. 2014, 53, 16621–16632. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Dai, L. sulfated graphene oxide as a hole-extraction layer in high performance polymer solar cells. J. Phys. Chem. Lett. 2012, 3, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wei, R.; Liu, X. Fluffy and ordered graphene multilayer films with improved electromagnetic interference shielding over x-band. ACS Appl. Mater. Interfaces 2017, 9, 22408–22419. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mamlouk, M.; Scott, K. Sulfonated polyether ether ketone–sulfonate graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Adv. 2014, 4, 617–623. [Google Scholar] [CrossRef]
- Hu, W.; Yu, B.; Jiang, S.-D.; Song, L.; Hu, Y.; Wang, B. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J. Hazard. Mater. 2015, 300, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-C.; Tsai, L.-D.; Huang, C.-P.; Kang, C.-Y.; Lin, J.-N.; Chang, F.-C. Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int. J. Hydrogen Energy 2013, 38, 13792–13801. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, Y.; Xu, M.; Lei, Y.; Liu, X. Studied on mechanical, thermal and dielectric properties of BPh/PEN-OH copolymer. Compos. Part B 2016, 106, 294–299. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, H.; Cao, L.; Li, Z.; Li, Z.; Gang, M.; Wang, C.; Wu, H.; Jiang, Z.; Zhang, P. Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid–base pairs for direct methanol fuel cells. Electrochim. Acta 2016, 203, 178–188. [Google Scholar] [CrossRef]
- Feng, K.; Tang, B.; Wu, P. Sulfonated graphene oxide–silica for highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A 2014, 2, 16083–16092. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, H.; Wu, H.; Jiang, Z. Enhanced proton conductivity of hybrid membranes by incorporating phosphorylated hollow mesoporous silica submicrospheres. J. Membr. Sci. 2014, 469, 418–427. [Google Scholar] [CrossRef]
- Li, Z.; He, G.; Zhang, B.; Cao, Y.; Wu, H.; Jiang, Z.; Zhou, T. Enhanced proton conductivity of nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading. ACS Appl. Mater. Interfaces 2014, 6, 9799–9807. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Zhang, H.; Ma, C.; Liu, J.; Cao, S.; Zhang, X. Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. J. Power Sources 2014, 269, 898–911. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Zhang, J.; Ma, L.; Li, Y.; Wang, J. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. J. Membr. Sci. 2016, 505, 108–118. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [PubMed]
- Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612. [Google Scholar] [CrossRef] [PubMed]
- Ru, C.; Li, Z.; Zhao, C.; Duan, Y.; Zhuang, Z.; Bu, F.; Na, H. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells. ACS Appl. Mater. Interfaces 2018, 10, 7963–7973. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Chen, J.-C.; Wu, J.-A.; Chen, K.-H. Synthesis and properties of poly(ether sulfone)s with clustered sulfonic groups for PEMFC applications under various relative humidity. ACS Appl. Mater. Interfaces 2017, 9, 9805–9814. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1137. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Baker, A.P.; Xu, X.; Xiang, Y.; Wang, L.; Lavorgna, M.; Wu, J. Enhancement of Nafion based membranes for direct methanol fuel cell applications through the inclusion of ammonium-X zeolite fillers. J. Power Sources 2015, 294, 369–376. [Google Scholar] [CrossRef]
- Gahlot, S.; Sharma, P.P.; Kulshrestha, V.; Jha, P.K. SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl. Mater. Interfaces 2014, 6, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
Membranes | Tensile strength (MPa) | Tensile modulus (MPa) | Elongation at break (%) |
---|---|---|---|
SPEN | 52.96 ± 1.96 | 766.03 ± 20.13 | 84.87 ± 3.01 |
SPEN/NSGO-0.5 | 57.98 ± 1.78 | 825.06 ± 20.21 | 75.42 ± 3.32 |
SPEN/NSGO-1 | 63.82 ± 1.53 | 872.87 ± 24.79 | 71.10 ± 2.72 |
SPEN/NSGO-2 | 70.55 ± 2.90 | 896.04 ± 25.63 | 67.03 ± 2.24 |
SPEN/NSGO-3 | 64.26 ± 2.49 | 881.83 ± 23.04 | 62.05 ± 2.57 |
Membranes | IEC (mmol/g) | WU (%) | SR (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
20 °C | 40 °C | 60 °C | 80 °C | 20 °C | 40 °C | 60 °C | 80 °C | ||
SPEN | 1.76 ± 0.01 | 20.05 | 27.05 | 37.39 | 58.02 | 7.02 | 8.12 | 11.37 | 16.72 |
SPEN/NSGO-0.5 | 1.77 ± 0.01 | 19.89 | 26.29 | 36.95 | 56.12 | 6.79 | 7.54 | 10.79 | 16.24 |
SPEN/NSGO-1 | 1.80 ± 0.02 | 17.24 | 24.82 | 35.08 | 50.09 | 6.34 | 7.36 | 9.91 | 14.75 |
SPEN/NSGO-2 | 1.83 ± 0.02 | 15.05 | 23.17 | 32.72 | 46.44 | 5.11 | 6.52 | 8.79 | 13.23 |
SPEN/NSGO-3 | 1.72 ± 0.01 | 17.43 | 25.11 | 34.05 | 47.48 | 6.13 | 7.29 | 10.41 | 14.98 |
Membranes | Proton conductivity (S·cm−1) | Methanol permeation (10−7 cm2·s−1) | Selectivity (105 S·cm−3·s) |
---|---|---|---|
SPEN | 0.045 | 4.12 | 1.09 |
SPEN/NSGO-0.5 | 0.047 | 2.21 | 2.13 |
SPEN/NSGO-1 | 0.049 | 1.61 | 3.04 |
SPEN/NSGO-2 | 0.056 | 1.41 | 3.97 |
SPEN/NSGO-3 | 0.042 | 1.87 | 2.25 |
SPEN/SGO-2 [14] | 0.0589 | 3.126 | 1.884 |
S [18] | 0.0505 | 2.49 | 2.04 |
N [18] | 0.053 | 1.25 | 2.46 |
SPEEK/SDBS-GO (8 wt %) [19] | 0.0938 | 9.5 | 0.99 |
SPEN/SCNTs/SPEN (3 wt %) [21] | 0.094 | 8.0 | 1.175 |
Nafion 117 [21] | 0.064 | 14.1 | 0.45 |
SGO-5 [44] | 0.058 | 1.556 | 3.727 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, T.; Zhang, X.; Ma, Y.; Huang, Y.; Liu, X. Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO. Polymers 2018, 10, 1005. https://doi.org/10.3390/polym10091005
Cheng T, Zhang X, Ma Y, Huang Y, Liu X. Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO. Polymers. 2018; 10(9):1005. https://doi.org/10.3390/polym10091005
Chicago/Turabian StyleCheng, Tao, Xuechun Zhang, Yan Ma, Yumin Huang, and Xiaobo Liu. 2018. "Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO" Polymers 10, no. 9: 1005. https://doi.org/10.3390/polym10091005
APA StyleCheng, T., Zhang, X., Ma, Y., Huang, Y., & Liu, X. (2018). Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO. Polymers, 10(9), 1005. https://doi.org/10.3390/polym10091005