β-Cyclodextrin–Hyaluronic Acid Polymer Functionalized Magnetic Graphene Oxide Nanocomposites for Targeted Photo-Chemotherapy of Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CDHA-MGO
2.2.1. Synthesis of MGO
2.2.2. Synthesis of CDHA-MGO
2.3. Characterizations of CDHA–MGO
2.4. NIR Enhanced Temperature Measurement
2.5. Drug Loading and Release Behaviors of CDHA–MGO
2.6. Cellular Uptake Assays and Anti-cancer Activity Evaluation
2.7. Cell Viability Assay
3. Results
3.1. Characterization of CDHA–MGO
3.2. Drug Loading Behavior
3.3. Photothermal Heating Effect of CDHA–MGO and In Vitro pH/NIR-Responsive DOX Release
3.4. Intracellular DOX Release and In Vitro Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Kurosaki, T.; Suzuki, M.; Enomoto, Y.; Nishimatsu, H.; Arai, T.; Sawabe, M.; Hosoi, T.; Homma, Y.; Kitamura, T. Significance of common variants on human chromosome 8q24 in relation to the risk of prostatecancer in native Japanese men. BMC Genet. 2009, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Deckers, R.; Moonen, C.T.W. Ultrasound triggered, image guided, local drug delivery. J. Control. Release 2010, 148, 25–33. [Google Scholar] [CrossRef] [PubMed]
- De Vita, V.T.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, D.A.; Bristol, M.L.; Yalowich, J.C. Toxicity issues in cancer drug development. Curr. Opin. Investig. Drug 2010, 11, 612–614. [Google Scholar]
- Hermanson, T.; Norris, L.B.; Bian, J.; Sartor, O.; Bennett, C.L. Toxicity and costs of toxicity associated withnew cancer drugs: International implications. J. Clin. Oncol. 2014, 32, 3591–3592. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Ahn, R.W.; Chen, F.; Fought, A.J.; O’Halloran, T.V.; Cryns, V.L.; Nguyen, S.T. Biological evaluationof pH-responsive polymer-caged nanobins for breast cancer therapy. ACS Nano 2010, 4, 4971–4978. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Qian, Y.F.; Liu, T.; Hu, X.L.; Zhang, G.Y.; You, Y.Z.; Liu, S.Y. Amphiphilic multiarm star blockcopolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 2011, 32, 6595–6605. [Google Scholar] [CrossRef]
- Yu, H.J.; Cui, Z.R.; Yu, P.C.; Guo, C.Y.; Feng, B.; Jiang, T.Y.; Wang, S.L.; Yin, Q.; Zhong, D.F.; Yang, X.L.; et al. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drugrelease to reverse doxorubicin resistance in breast cancer. Adv. Funct. Mater. 2015, 25, 2489–2500. [Google Scholar] [CrossRef]
- Lin, C.T.; Lin, I.C.; Sung, S.Y.; Su, Y.L.; Huang, Y.F.; Chiang, C.S.; Hu, S.H. Dual-targetedphotopenetrative delivery of multiple micelles/hydrophobic drugs by a nanopea for enhanced tumortherapy. Adv. Funct. Mater. 2016, 26, 4169–4179. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, Z.X.; Liao, N.S..; Lan, S.Y.; Wu, M.; Sun, H.Y.; Wei, Z.W.; Li, J.; Liu, X.L. pH/hypoxia programmable triggered cancer photo-chemotherapy based on a semiconducting polymer dot hybridized mesoporous silica framework. Chem. Sci. 2018, 9, 7390–7399. [Google Scholar] [CrossRef] [PubMed]
- Ching, W.C.; Wei, J.S.; Tzu, C.H.; Yao, C.L.; Jong, K.H.; Kuo, Y.H.; Hsiu, P.Y.; Mei, Y.L.; Ping, S.L. Encapsulation of Au/Fe3O4 nanoparticles into a polymer nanoarchitecture with combined near infrared-triggered chemo-photothermal therapy based on intracellular secondary protein understanding. J. Mater. Chem. B 2017, 5, 5774–5782. [Google Scholar]
- Wang, W.H.; Liang, G.H.; Zhang, W.J.; Xing, D.; Hu, X.L. Cascade-promoted photo-hemotherapy against resistant cancers by enzyme-responsive polyprodrug nanoplatforms. Chem. Mater. 2018, 30, 3486–3498. [Google Scholar] [CrossRef]
- Wang, T.T.; Wang, D.G.; Yu, H.J.; Wang, M.W.; Liu, J.P.; Feng, B.; Zhou, F.Y.; Qi, Y.; Zhang, Z.W.; Huang, Y.Z.; et al. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 2016, 10, 3496–3508. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Qian, J.W.; Zhou, L.Z.; Su, Y.; Zhang, R.; Dong, C.M. Biopolymer–drug conjugate nanotheranostics for multimodal imaging-guided synergistic cancer photothermal–chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 31576–31588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, K.Y.; Zhao, J.F.; Liu, X.G.; Bu, J.; Yan, X.Y.; Huang, R.Q. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 2013, 135, 4799–4804. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.Y.; Li, S.N.; Zhang, L.Y.; Li, L.; Wang, C.G.; Su, Z.M. Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles forsimultaneous imaging and pH/NIR-responsivedrug delivery. Chem. Commun. 2016, 52, 11068–11071. [Google Scholar] [CrossRef]
- Niiyama, E.; Uto, K.; Lee, C.M.; Sakura, K.; Ebara, M. Alternating magnetic field-triggered switchable nanofiber mesh for cancer thermo-chemotherapy. Polymers 2018, 10, 1018. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, D.Y. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 2018, 10, 961. [Google Scholar] [CrossRef]
- Zhang, H.; Grünerbc, G.; Zhao, Y. Recent advancements of graphene in biomedicine. J. Mater. Chem. B 2013, 1, 2542–2567. [Google Scholar] [CrossRef]
- Fan, X.J.; Jiao, G.Z.; Zhao, W.; Jin, P.F.; Li, X. Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 2013, 5, 1143–1152. [Google Scholar] [CrossRef]
- Yang, X.Y.; Zhang, X.Y.; Ma, Y.F.; Huang, Y.; Wang, Y.S.; Chen, Y.S. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710–2714. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, Y.S.; Huang, X.; Ma, Y.F.; Huang, Y.; Yang, R.C.; Duan, H.Q.; Chen, Y.S. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem. 2011, 21, 3448–3454. [Google Scholar] [CrossRef]
- Cai, Z.X.; Zhang, H.B.; Wei, Y.; Gong, F.S. Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules 2017, 18, 1677–1696. [Google Scholar] [CrossRef] [PubMed]
- Mattheolabakis, G.; Rigas, B.; Constantinides, P.P. Nanodelivery strategies in cancer chemotherapy: Biologicalrationale and pharmaceutical perspectives. Nanomedicine 2012, 7, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Moon, M.J.; Kim, D.Y.; Heo, S.H.; Jeong, Y.Y. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers 2018, 10, 1133. [Google Scholar] [CrossRef]
- Hong, S.S.; Li, Z.B.; Li, C.Z.; Dong, C.; Shuang, S.M. β-Cyclodextrin grafted polypyrrole magnetic nanocomposites towardthe targeted delivery and controlled release of doxorubicin. Appl. Surf. Sci. 2018, 427, 1189–1198. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.M.; Chen, Y.; Chen, J.T.; Liu, Y. Targeted polysaccharide nanoparticle foradamplatin prodrug delivery. J. Med. Chem. 2013, 56, 9725–9736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Zhang, Y.M.; Yang, Y.; Chen, L.X.; Liu, Y. Controlled DNA condensation and targeted cellular imaging by ligand exchange in apolysaccharide–quantum dot conjugate. Chem. Commun. 2016, 52, 6087–6090. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.M.; Chen, Y.; Chen, J.T.; Liu, Y. Polysaccharide-based noncovalent assembly for targeted delivery of taxol. Sci. Rep. 2016, 6, 19212. [Google Scholar] [CrossRef]
- Yu, Q.L.; Zhang, Y.M.; Liu, Y.; Xu, X.; Liu, Y. Magnetism and photo dual-controlled supramolecular assembly for suppression of tumor invasion and metastasis. Sci. Adv. 2018, 4, eaat2297. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Zhou, Y.H.; Sun, L.L.; Liang, W.T.; Yang, J.; Shuang, S.M.; Dong, C. Effective adsorption of phenolic pollutants from water using β-cyclodextrin polymer functionalized Fe3O4 magnetic nanoparticles. RSC Adv. 2016, 6, 80955–80963. [Google Scholar] [CrossRef]
- Zeta Potential of Colloids in Water and Waste Water, ASTM Standard D4187–82; American Society for Testing and Materials: West Conshohocken, PA, USA, 1985.
- Pandey, H.; Parashar, V.; Parashar, R.; Prakash, R.; Ramteke, P.W.; Pandey, A.C. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 2011, 3, 4104–4108. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lagergren’s Pseudo-first-order Kinetic Model | Ho’s Pseudo-second-order Kinetic Model | ||||
---|---|---|---|---|---|
Qe (mg/g) | k1 (h−1) | R2 | Qe (mg/g) | k2 (g (mg h)−1) | R2 |
3.748 | 0.009210 | 0.7516 | 79.05 | 0.04245 | 0.9999 |
Langmuir Isotherm Model | Freundlich Isotherm Model | ||||
---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | n | KF (L/mg) | R2 |
485.4 | 30.77 | 0.9863 | 3.890 | 1.293 | 0.9742 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Huang, Y.; Lu, D.; Ma, X.; Gong, T.; Cui, X.; Yu, B.; Yang, C.; Dong, C.; Shuang, S. β-Cyclodextrin–Hyaluronic Acid Polymer Functionalized Magnetic Graphene Oxide Nanocomposites for Targeted Photo-Chemotherapy of Tumor Cells. Polymers 2019, 11, 133. https://doi.org/10.3390/polym11010133
Liang W, Huang Y, Lu D, Ma X, Gong T, Cui X, Yu B, Yang C, Dong C, Shuang S. β-Cyclodextrin–Hyaluronic Acid Polymer Functionalized Magnetic Graphene Oxide Nanocomposites for Targeted Photo-Chemotherapy of Tumor Cells. Polymers. 2019; 11(1):133. https://doi.org/10.3390/polym11010133
Chicago/Turabian StyleLiang, Wenting, Yu Huang, Dongtao Lu, Xuewen Ma, Tao Gong, Xiaodong Cui, Baofeng Yu, Cheng Yang, Chuan Dong, and Shaomin Shuang. 2019. "β-Cyclodextrin–Hyaluronic Acid Polymer Functionalized Magnetic Graphene Oxide Nanocomposites for Targeted Photo-Chemotherapy of Tumor Cells" Polymers 11, no. 1: 133. https://doi.org/10.3390/polym11010133
APA StyleLiang, W., Huang, Y., Lu, D., Ma, X., Gong, T., Cui, X., Yu, B., Yang, C., Dong, C., & Shuang, S. (2019). β-Cyclodextrin–Hyaluronic Acid Polymer Functionalized Magnetic Graphene Oxide Nanocomposites for Targeted Photo-Chemotherapy of Tumor Cells. Polymers, 11(1), 133. https://doi.org/10.3390/polym11010133