Electrospun Graphene Nanosheet-Filled Poly(Trimethylene Terephthalate) Composite Fibers: Effects of the Graphene Nanosheet Content on Morphologies, Electrical Conductivity, Crystallization Behavior, and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Composite Preparation
2.2. Poly(trimethylene terephthalate)/Graphene Nanosheet (PTT/GNS) Solution Preparation and Properties
2.3. Electrospinning Process
2.4. Morphology and Characterization of Fibers
3. Results and Discussion
3.1. Effect of Carbon Nanofillers on Solution Properties
3.2. Effect of GNS Concentration on Electrospinning and As-Spun Fiber Morphology
3.3. Cold Crystallization of Electrospun PTT/GNS Composite Fibers
3.4. Mechanical Properties of Electrospun PTT/GNS Composite Fibers
3.5. Electrical Properties of Electrospun PTT Composite Fiber Mats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Grossiord, N.; Loos, J.; van Laake, L.; Maugey, M.; Zakri, C.; Koning, C.E.; Hart, A.J. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv. Funct. Mater. 2008, 18, 3226–3234. [Google Scholar] [CrossRef]
- Thomassin, J.-M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Zhang, H.B.; Yan, Q.; Zheng, W.G.; He, Z.; Yu, Z.Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Sreeprasad, T.S.; Rodriguez, A.A.; Colston, J.; Graham, A.; Shishkin, E.; Pallem, V.; Berry, V. Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 2013, 13, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Bisri, S.Z.; Gao, J.; Derenskyi, V.; Gomulya, W.; Iezhokin, I.; Gordiichuk, P.; Herrmann, A.; Loi, M.A. High performance ambipolar field-effect transistor of random network carbon nanotubes. Adv. Mater. 2012, 24, 6147–6152. [Google Scholar] [CrossRef]
- Derenskyi, V.; Gomulya, W.; Rios, J.M.; Fritsch, M.; Frohlich, N.; Jung, S.; Allard, S.; Bisri, S.Z.; Gordiichuk, P.; Herrmann, A.; et al. Carbon nanotube network ambipolar field-effect transistors with 10(8) on/off ratio. Adv. Mater. 2014, 26, 5969–5975. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Yu, J.; Wang, M. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 2011, 6, 510–530. [Google Scholar] [CrossRef]
- Su, Z.; Li, J.; Li, Q.; Ni, T.; Wei, G. Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon 2012, 50, 5605–5617. [Google Scholar] [CrossRef]
- Kim, B.-H.; Yang, K.S. Structure and electrochemical properties of electrospun carbon fiber composites containing graphene. J. Ind. Eng. Chem. 2014, 20, 3474–3479. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Ouyang, Z.; Zhang, M.; Lin, Z.; Li, J.; Su, Z.; Wei, G. Nanoscale graphene doped with highly dispersed silver nanoparticles: Quick synthesis, facile fabrication of 3D membrane-modified electrode, and super performance for electrochemical sensing. Adv. Funct. Mater. 2016, 26, 2122–2134. [Google Scholar] [CrossRef]
- Jin, X.; Ni, Q.-Q.; Fu, Y.; Zhang, L.; Natsuki, T. Electrospun nanocomposite polyacrylonitrile fibers containing carbon nanotubes and cobalt ferrite. Polym. Compos. 2012, 33, 317–323. [Google Scholar] [CrossRef]
- Li, B.; Yuan, H.; Zhang, Y. Transparent PMMA-based nanocomposite using electrospun graphene-incorporated PA-6 nanofibers as the reinforcement. Compos. Sci. Technol. 2013, 89, 134–141. [Google Scholar] [CrossRef]
- Ramazani, S.; Karimi, M. Electrospinning of poly(ε-caprolactone) solutions containing graphene oxide: Effects of graphene oxide content and oxidation level. Polym. Compos. 2016, 37, 131–140. [Google Scholar] [CrossRef]
- Huang, C.-L.; Peng, S.-Y.; Wang, Y.-J.; Chen, W.-C.; Lin, J.-H. Microstructure and characterization of electrospun poly(vinyl alcohol) nanofiber scaffolds filled with graphene nanosheets. J. Appl. Polym. Sci. 2015, 132, 41891. [Google Scholar] [CrossRef]
- Gao, J.; Hu, M.; Dong, Y.; Li, R.K. Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties. ACS Appl. Mater. Interfaces 2013, 5, 7758–7764. [Google Scholar] [CrossRef] [PubMed]
- Garboczi, E.J.; Snyder, K.A.; Douglas, J.F.; Thorpe, M.F. Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 1995, 52, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Heaney, M.B. Measurement and interpretation of nonuniversal critical exponents in disordered conductor–insulator composites. Phys. Rev. B 1995, 52, 12477–12480. [Google Scholar] [CrossRef]
- Huang, C.-L.; Wang, Y.-J.; Fan, Y.-C.; Hung, C.-L.; Liu, Y.-C. The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: A comparative study. J. Mater. Sci. 2016, 52, 2560–2580. [Google Scholar] [CrossRef]
- Mazinani, S.; Ajji, A.; Dubois, C. Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 2009, 50, 3329–3342. [Google Scholar] [CrossRef]
- Chien, H.-S.; Wang, C. Morphology, microstructure, and electrical properties of poly(d,l-lactic acid)/carbon nanocapsule composite nanofibers. J. Appl. Polym. Sci. 2013, 128, 958–969. [Google Scholar] [CrossRef]
- Chen, K.; Tang, X. Instantaneous elastic recovery of poly(trimethylene terephthalate) filament. J. Appl. Polym. Sci. 2004, 91, 1967–1975. [Google Scholar] [CrossRef]
- Zhang, J. Study of poly(trimethylene terephthalate) as an engineering thermoplastics material. J. Appl. Polym. Sci. 2004, 91, 1657–1666. [Google Scholar] [CrossRef]
- Chen, T.-K.; Tien, Y.-I.; Wei, K.-H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 2000, 41, 1345–1353. [Google Scholar] [CrossRef]
- Launay, A.; Thominette, F.; Verdu, J. Water sorption in amorphous poly(ethylene terephthalate). J. Appl. Polym. Sci. 1999, 73, 1131–1137. [Google Scholar] [CrossRef]
- Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2011, 71, 1563–1568. [Google Scholar] [CrossRef]
- Huang, C.-L.; Wang, Y.-J.; Fan, Y.-C. Morphological features and crystallization behavior of the conductive composites of poly(trimethylene terephthalate)/graphene nanosheets. J. Appl. Polym. Sci. 2016, 133, 43419. [Google Scholar] [CrossRef]
- Wu, D.; Shi, T.; Yang, T.; Sun, Y.; Zhai, L.; Zhou, W.; Zhang, M.; Zhang, J. Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. Eur. Polym. J. 2011, 47, 284–293. [Google Scholar] [CrossRef]
- Khil, M.S.; Kim, H.Y.; Kim, M.S.; Park, S.Y.; Lee, D.-R. Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 2004, 45, 295–301. [Google Scholar] [CrossRef]
- Wang, C.; Fang, C.-Y.; Wang, C.-Y. Electrospun poly(butylene terephthalate) fibers: Entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 2015, 72, 21–29. [Google Scholar] [CrossRef]
- Wang, C.; Lee, M.-F.; Wu, Y.-J. Solution-electrospun poly(ethylene terephthalate) fibers: Processing and characterization. Macromolecules 2012, 45, 7939–7947. [Google Scholar] [CrossRef]
- Wang, C.; Lee, M.-F.; Jao, C.-H. Phase transition of poly(ethylene terephthalate) in nanofibers electrospun from phenol-based solution. Eur. Polym. J. 2014, 52, 127–136. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Yang, Y.; Wang, J.-W.; Lu, Z.-H.; Ji, G.-Y.; Yu, Z.-Z. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 2010, 51, 1191–1196. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Jiang, Z.-G.; Yu, Z.-Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 2012, 50, 5117–5125. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- McKee, M.G.; Wilkes, G.L.; Colby, R.H.; Long, T.E. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 2004, 37, 1760–1767. [Google Scholar] [CrossRef]
- Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer–polymer interaction limit. Polymer 2005, 46, 3372–3384. [Google Scholar] [CrossRef]
- Tsou, S.-Y.; Lin, H.-S.; Cheng, P.-J.; Huang, C.-L.; Wu, J.-Y.; Wang, C. Rheological aspect on electrospinning of polyamide 6 solutions. Eur. Polym. J. 2013, 49, 3619–3629. [Google Scholar] [CrossRef]
- Huang, C.-L.; Wang, C. Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes. Carbon 2011, 49, 2334–2344. [Google Scholar] [CrossRef]
- Cloupeau, M.; Prunet-Foch, B. Electrostatic spraying of liquids in cone-jet mode. J. Electrost. 1989, 22, 135–159. [Google Scholar] [CrossRef]
- Chen, D.-R.; Pui, D.Y.; Kaufman, S.L. Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. J. Aerosol. Sci. 1995, 26, 963–977. [Google Scholar] [CrossRef]
- Bhattarai, S.R.; Bhattarai, N.; Yi, H.K.; Hwang, P.H.; Cha, D.I.; Kim, H.Y. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials 2004, 25, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hsu, C.-H.; Lin, J.-H. Scaling laws in electrospinning of polystyrene solutions. Macromolecules 2006, 39, 7662–7672. [Google Scholar] [CrossRef]
- Ahn, B.W.; Chi, Y.S.; Kang, T.J. Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 2008, 110, 4055–4063. [Google Scholar] [CrossRef]
- Ding, B.; Li, C.; Miyauchi, Y.; Kuwaki, O.; Shiratori, S. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology 2006, 17, 3685–3691. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010, 43, 2357–2363. [Google Scholar] [CrossRef]
- Chuang, W.-T.; Su, W.-B.; Jeng, U.S.; Hong, P.-D.; Su, C.-J.; Su, C.-H.; Huang, Y.-C.; Laio, K.-F.; Su, A.-C. Formation of mesomorphic domains and subsequent structural evolution during cold crystallization of poly(trimethylene terephthalate). Macromolecules 2011, 44, 1140–1148. [Google Scholar] [CrossRef]
- Ward, I.; Wilding, M. Infra-red and Raman spectra of poly(m-methylene terephthalate) polymers. Polymer 1977, 18, 327–335. [Google Scholar] [CrossRef]
- Kim, K.; Bae, J.; Kim, Y. Infrared spectroscopic analysis of poly(trimethylene terephthalate). Polymer 2001, 42, 1023–1033. [Google Scholar] [CrossRef]
- Poulin-Dandurand, S.; Pérez, S.; Revol, J.-F.; Brisse, F. The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction. Polymer 1979, 20, 419–426. [Google Scholar] [CrossRef]
- Jalili, R.; Aboutalebi, S.H.; Esrafilzadeh, D.; Shepherd, R.L.; Chen, J.; Aminorroaya-Yamini, S.; Konstantinov, K.; Minett, A.I.; Razal, J.M.; Wallace, G.G. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles. Adv. Funct. Mater. 2013, 23, 5345–5354. [Google Scholar] [CrossRef]
- Chen, S.; Ma, W.; Cheng, Y.; Weng, Z.; Sun, B.; Wang, L.; Chen, W.; Li, F.; Zhu, M.; Cheng, H.-M. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 2015, 15, 642–653. [Google Scholar] [CrossRef]
- Balberg, I.I. Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 1987, 59, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Vionnet-Menot, S.; Grimaldi, C.; Maeder, T.; Strässler, S.; Ryser, P. Tunneling-percolation origin of nonuniversality: Theory and experiments. Phys. Rev. B 2005, 71, 064201–064204. [Google Scholar] [CrossRef]
- Grimaldi, C.; Balberg, I. Tunneling and nonuniversality in continuum percolation systems. Phys. Rev. Lett. 2006, 96, 066602. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008, 56, 2929–2936. [Google Scholar] [CrossRef] [Green Version]
Poly(trimethylene terephthalate) (PTT) Concentration (wt %) | Graphene Nanosheet (GNS) Concentration (wt %) | Fiber Morphology |
---|---|---|
7, 8 | - | Beads on fiber |
9, 11, 12, 14 | - | Smooth fiber with nanofibril |
14 | 1, 3, 5, 7 | Irregular fiber structure with nanofibril; irregular fiber structure depend on GNS concentrations |
11 | 10, 12 | Irregular fiber structure with nanofibril; irregular fiber structure size depend on GNS concentrations |
9 | 14 | Irregular fiber structure with nanofibril and big GNS aggregation particles |
7 | 16 | Irregular fiber structure with nanofibril and big GNS aggregation particles |
PTT/GNS fibers | Tg (°C) | Tc (°C) | ΔHc (J/g) | Tm (°C) | ΔHm (J/g) |
---|---|---|---|---|---|
100/0 | 40.4 | 59.4 | 10.1 | 227.4 | 66.21 |
99/1 | 43.4 | 59.7 | 9.9 | 227.9 | 41.20 |
97/3 | 39.3 | 55.3 | 5.6 | 227.4 | 46.95 |
95/5 | - | - | - | 225.8 | 48.51 |
93/7 | - | - | - | 225.9 | 43.24 |
PTT/GNS CFMs | E (MPa) | σmax (MPa) | εmax (%) | df (nm) | Porosity (%) | Fifth Elastic Recovery (%) |
---|---|---|---|---|---|---|
100/0 | 141.6 ±30.7 | 15.1 ± 2.0 | 102.5 ±7.7 | 256 ± 92 | 46 | 85.8 |
99/1 | 89.4 ± 5.0 | 10.0 ± 0.5 | 106.9 ±2.8 | 141 ± 28 | 57 | 84.4 |
97/3 | 52.9 ± 11.2 | 4.4 ± 0.5 | 109.8 ± 8.7 | 310 ± 116 | 43 | 83.4 |
95/5 | 22.6 ± 7.2 | 3.0 ± 0.1 | 123.8 ± 3.6 | 359 ± 133 | 39 | 83.9 |
100/0@170 | 102.0 ± 6.5 | 9.9 ± 0.4 | 48.6 ± 3.5 | 290 ± 87 | 47 | 91.8 |
99/1@170 | 77.4 ± 5.4 | 7.4 ± 0.2 | 49.6 ± 1.9 | 237 ± 81 | 59 | 91.7 |
97/3@170 | 37.0 ± 3.0 | 4.9 ± 0.2 | 53.7 ±1.8 | 347 ± 128 | 43 | 90.9 |
95/5@170 | 35.0 ± 3.9 | 3.5 ± 0.1 | 56.9 ± 3.3 | 366 ± 134 | 43 | 90.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-L.; Wu, H.-H.; Jeng, Y.-C.; Liang, W.-Z. Electrospun Graphene Nanosheet-Filled Poly(Trimethylene Terephthalate) Composite Fibers: Effects of the Graphene Nanosheet Content on Morphologies, Electrical Conductivity, Crystallization Behavior, and Mechanical Properties. Polymers 2019, 11, 164. https://doi.org/10.3390/polym11010164
Huang C-L, Wu H-H, Jeng Y-C, Liang W-Z. Electrospun Graphene Nanosheet-Filled Poly(Trimethylene Terephthalate) Composite Fibers: Effects of the Graphene Nanosheet Content on Morphologies, Electrical Conductivity, Crystallization Behavior, and Mechanical Properties. Polymers. 2019; 11(1):164. https://doi.org/10.3390/polym11010164
Chicago/Turabian StyleHuang, Chien-Lin, Hsuan-Hua Wu, Yung-Ching Jeng, and Wei-Zhi Liang. 2019. "Electrospun Graphene Nanosheet-Filled Poly(Trimethylene Terephthalate) Composite Fibers: Effects of the Graphene Nanosheet Content on Morphologies, Electrical Conductivity, Crystallization Behavior, and Mechanical Properties" Polymers 11, no. 1: 164. https://doi.org/10.3390/polym11010164
APA StyleHuang, C.-L., Wu, H.-H., Jeng, Y.-C., & Liang, W.-Z. (2019). Electrospun Graphene Nanosheet-Filled Poly(Trimethylene Terephthalate) Composite Fibers: Effects of the Graphene Nanosheet Content on Morphologies, Electrical Conductivity, Crystallization Behavior, and Mechanical Properties. Polymers, 11(1), 164. https://doi.org/10.3390/polym11010164