Layer-by-Layer Assembly and Electrochemical Study of Alizarin Red S-Based Thin Films
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Preparation of LbL Assemblies
2.3. Characterization
3. Results and Discussion
3.1. Digital Images and UV–Vis Spectroscopy
3.2. Film Growth Behavior
3.3. Surface Morphology
3.4. Electrochemical Properties
3.4.1. Cyclic Voltammetry
3.4.2. Spectroelectrochemistry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tokuhisa, H.; Hammond, P.T. Solid-state photovoltaic thin films using TiO2, organic dyes, and layer-by-layer polyelectrolyte nanocomposites. Adv. Funct. Mater. 2003, 13, 831–839. [Google Scholar] [CrossRef]
- Sung, C.; Ye, Y.X.; Lutkenhaus, J.L. Reversibly pH-responsive nanoporous layer-by-layer microtubes. ACS Macro Lett. 2015, 4, 353–356. [Google Scholar] [CrossRef]
- Benselfelt, T.; Pettersson, T.; Wågberg, L. Influence of surface charge density and morphology on the formation of polyelectrolyte multilayers on smooth charged cellulose surfaces. Langmuir 2017, 33, 968–979. [Google Scholar] [CrossRef]
- Polomska, A.; Gauthier, M.A.; Leroux, J.C. In vitro and in vivo evaluation of PEGylated layer-by-layer polyelectrolyte-coated paclitaxel nanocrystals. Small 2017, 13, 1602066. [Google Scholar] [CrossRef]
- Wang, T.; Lu, J.R.; Mao, L.L.; Wang, Z.N. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane. J. Membrane Sci. 2016, 515, 125–133. [Google Scholar] [CrossRef]
- Iler, R.K. Multilayers of colloidal particles. J. Colloid Interface Sci. 1966, 21, 569–594. [Google Scholar] [CrossRef]
- Decher, G.; Hong, J.D. Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol. Chem. Macromol. Symp. 1991, 46, 321–327. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 227, 1232–1237. [Google Scholar] [CrossRef]
- O’Neal, J.T.; Dai, E.Y.; Zhang, Y.P.; Clark, K.B.; Wilcox, K.G.; George, L.M.; Ramasamy, N.E.; Enriquez, D.; Batys, P.; Sammalkorpi, M.; et al. QCM-D investigation of swelling behavior of layer-by-layer thin films upon exposure to monovalent ions. Langmuir 2018, 34, 999–1009. [Google Scholar] [CrossRef]
- Huang, W.; Li, X.; Xue, Y.; Huang, R.; Deng, H.; Ma, Z. Antibacterial multilayer films fabricated by LBL immobilizing lysozyme and HTCC on nanfibrous mats. Int. J. Biol. Macromol. 2013, 53, 26–31. [Google Scholar] [CrossRef]
- Nakane, Y.; Kubo, I. Layer-by-layer of liposomes and membrane protein as a recognition element of biosensor. Thin Solid Films 2009, 518, 678–681. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Wu, Q.; Chen, Z.; Lin, X. Anonenzymatic hydrogen peroxide sensor based on Au-Ag nanotubes and chitosan film. J. Electroanal. Chem. 2014, 735, 13–23. [Google Scholar] [CrossRef]
- Mauquoy, S.; Dupont-Gillain, C. Combination of collagen and fibronectin to design biomimetic interfaces: Do these proteins form layer-by-layer assemblies? Colloids Surf. B 2016, 147, 54–64. [Google Scholar] [CrossRef]
- Wei, Y.P.; Hung H., C.; Sun, F.; Bai, T.; Zhang, P.; Nowinski, A.K.; Jiang, S.Y. Achieving low-fouling surfaces with oppositely charged polysaccharides via LBL assembly. Acta Biomater. 2016, 40, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Ryu, J.H.; Lee, D.Y.; Lee, H. Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater. Sci. 2013, 1, 783–790. [Google Scholar] [CrossRef]
- Berth, G.; Voigt, A.; Dautzenberg, H.; Donath, E.; Möhwald, H. Complexes and layer-by-layer capsules from chitosan/chitosan sulfate. Biomacromolecules 2002, 3, 579–590. [Google Scholar] [CrossRef]
- Srivastava, S.; Kotov, N.A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res. 2008, 41, 1831–1841. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Morton, S.W.; Shopsowitz, K.E.; Choi, J.H.; Deng, Z.J.; Cho, N.J.; Hammond, P.T. Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 2014, 8, 8374–8382. [Google Scholar] [CrossRef]
- Morton, S.W.; Poon, Z.Y.; Hammond, P.T. The architecture and biological performance of drug-loaded LbL nanoparticles. Biomaterials 2013, 34, 5328–5335. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.M.; De Rossi, F.; Di Giacomo, F.; Mincuzzi, G.; Zardetto, V.; Reale, A.; Di Carlo, A. Progress in flexible dye solar cell materials, processes and devices. J. Mater. Chem. A 2014, 2, 10788–10817. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, Y.B.; Jang, S.K.; Kang, J.; Jeon, J.; Lee, C.G.; Lee, J.Y.; Kim, H.; Hwang, E.; Lee, S.; et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285–8291. [Google Scholar] [CrossRef]
- Dai, Z.; Dähne, L.; Donath, E.; Möhwald, H. Downhill energy transfer via ordered multichromophores in light-harvesting capsules. J. Phys. Chem. B 2002, 106, 11501–11508. [Google Scholar] [CrossRef]
- Szabó, T.; Péter, Z.; Illés, E.; Janovák, L.; Talyzin, A. Stability and dye inclusion of graphene oxide/polyelectrolyte layer-by-layer self-assembled films in saline, acidic and basic aqueous solutions. Carbon 2017, 111, 350–357. [Google Scholar] [CrossRef]
- Sudbeck, E.A.; Dubin, P.L.; Curran, M.E.; Skelton, J. Dye Solubilization in Polyelectrolyte Micelle Complexes. J. Colloid Interface Sci. 1991, 142, 512–517. [Google Scholar] [CrossRef]
- Xia, J.L.; Zhang, H.W.; Rigsbee, D.R.; Dubin, P.L.; Shaikh, T. Structural Elucidation of Soluble Polyelectrolyte-Micelle Complexes—Intrapolymer vs. Interpolymer Association. Macromolecules 1993, 26, 2759–2766. [Google Scholar] [CrossRef]
- Li, Y.J.; Dubin, P.L. Polymer-Surfactant Complexes: Structure and Flow in Surfactant Solutions; Herb, C.A., Prud’homme, R.K., Eds.; American Chemical Society: Washington, WA, USA, 1994; Volume 578, pp. 320–336, ISBN-13 9780841230545. [Google Scholar]
- Wang, Y.L.; Kimura, K.; Dubin, P.L.; Jaeger, W. Polyelectrolyte-micelle coacervation: Effects of micelle surface charge density, polymer molecular weight, and polymer/surfactant ratio. Macromolecules 2000, 33, 3324–3331. [Google Scholar] [CrossRef]
- Wang, Y.L.; Banziger, J.; Dubin, P.L.; Filippelli, G.; Nuraje, N. Adsorptive partitioning of an organic compound onto polyelectrolyte-immobilized micelles on porous glass and sand. Environ. Sci. Technol. 2001, 35, 2608–2611. [Google Scholar] [CrossRef]
- Fan, Y.X.; Kellermeier, M.; Xu, A.Y.; Boyko, V.; Mirtschin, S.; Dubin, P.L. Modulation of Polyelectrolyte Micelle Interactions via Zeta Potentials. Macromolecules 2017, 50, 5518–5526. [Google Scholar] [CrossRef]
- Sipaviciute, D.; Barabauskyte, U.; Tavgeniene, D.; Krucaite, G.; Grazulevicius, J.V.; Volyniuk, D.; Grigalevicius, S. Phenylethenyl substituted 10-alkylphenoxazines as new electroactive materials for organic light emitting diodes. Dyes Pigments 2017, 148, 313–318. [Google Scholar] [CrossRef]
- Crespilho, F.N.; Zucolotto, V.; Oliveira, O.N., Jr.; Nart, F.C. Electrochemistry of layer-by-layer films: A review. Int. J. Electrochem. Sci. 2006, 1, 194–214. [Google Scholar]
- Shinbo, K.; Onishi, K.; Miyabayashi, S.; Takahashi, K.; Katagiri, S.; Kato, K.; Kaneko, F.; Advincula, R.C. Fabrication and electrochemical properties of layer-by-layer deposited films containing phthalocyanine dyes. Thin Solid Films 2003, 438–439, 177–181. [Google Scholar] [CrossRef]
- Lvov, Y.M.; Kamau, G.N.; Zhou, D.L.; Rusling, J.F. Assembly of electroactive ordered multilayer films of cobalt phthalocyanine tetrasulfonate and polycations. J. Colloid Interface Sci. 1999, 212, 570–575. [Google Scholar] [CrossRef]
- Locklin, J.; Shinbo, K.; Onishi, K.; Kaneko, F.; Bao, Z.N.; Advincula, R.C. Ambipolar organic thin film transistor-like behavior of cationic and anionic phthalocyanines fabricated using layer-by-layer deposition from aqueous solution. Chem. Mater. 2003, 15, 1404–1412. [Google Scholar] [CrossRef]
- Siqueira, J.R., Jr.; Gasparotto, L.H.S.; Oliveira, O.N., Jr.; Zucolotto, V. Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J. Phys. Chem. C 2008, 112, 9050–9055. [Google Scholar] [CrossRef]
- Wu, H.; Guo, L.X.; Zhang, J.L.; Miao, S.L.; He, C.Y.; Wang, B.; Wu, Y.Q.; Chen, Z.M. Polyelectrolyte-free layer by layer self-assembled multilayer films of cationic phthalocyanine cobalt(II) and carbon nanotube for the efficient detection of 4-nitrophenol. Sens. Actuators B Chem. 2016, 30, 359–366. [Google Scholar] [CrossRef]
- Shen, Y.; Zhan, F.; Lu, J.F.; Zhang, B.Y.; Huang, D.K.; Xu, X.B.; Zhang, Y.B.; Wang, M.K. Preparation of hybrid films containing gold nanoparticles and cobalt porphyrin with flexible electrochemical properties. Thin Solid Films 2013, 545, 327–331. [Google Scholar] [CrossRef]
- Huang, D.K.; Lu, J.F.; Li, S.H.; Luo, Y.P.; Zhao, C.; Hu, B.; Wang, M.K.; Shen, Y. Fabrication of cobalt porphyrin. Electrochemically reduced graphene oxide hybrid films for electrocatalytic hydrogen evolution in aqueous solution. Langmuir 2014, 30, 6990–6998. [Google Scholar] [CrossRef]
- Shao, M.; Han, J.; Shi, W.; Wei, M.; Duan, X. Layer-by-layer assembly of porphyrin/layered double hydroxide ultrathin film and its electrocatalytic behavior for H2O2. Electrochem. Commun. 2010, 12, 1077–1080. [Google Scholar] [CrossRef]
- Yan, Y.M.; Zhang, M.N.; Gong, K.P.; Su, L.; Guo, Z.X.; Mao, L.Q. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem. Mater. 2005, 17, 3457–3463. [Google Scholar] [CrossRef]
- Kong, X.G.; Shi, W.Y.; Zhao, J.W.; Wei, M.; Duan, X. Layer-by-layer assembly of electroactive dye/inorganic matrix film and its application as sensor for ascorbic acid. Talanta 2011, 85, 493–498. [Google Scholar] [CrossRef]
- Shamsipur, M.; Siroueinejad, A.; Hemmateenejad, B.; Abbaspour, A.; Sharghi, H.; Alizadeh, K.; Arshadi, S. Cyclic voltammetric, computational, and quantitative structure-electrochemistry relationship studies of the reduction of several 9, 10-anthraquinone derivatives. J. Electroanal. Chem. 2007, 600, 345–358. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.W.; Yi, H.; Wang, X.F.; Yan X., R.; Guo, Z.H. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 2014, 118, 8262–8270. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, N.F. Loading/release behavior of (chitosan/DNA)n layer-by-layer films toward negatively charged anthraquinone and its application in electrochemical detection of natural DNA damage. Biosens. Bioelectron. 2007, 23, 661–667. [Google Scholar] [CrossRef]
- Zhang, Y.J.; He, X.P.; Hu, M.; Li, Z.; Shi, X.X.; Chen, G.R. Highly optically selective and electrochemically active chemosensor for copper (II) based on triazole-linked glucosyl anthraquinone. Dyes Pigments 2011, 88, 391–395. [Google Scholar] [CrossRef]
- Turcanu, A.; Bechtold, T. pH dependent redox behavior of Alizarin Red S (1,2-dihydroxy-9,10-anthraquinone-3-sulfonate)-Cyclic voltammetry in presence of dispersed vat dye. Dyes Pigments 2011, 91, 324–331. [Google Scholar] [CrossRef]
- Mech, J.; Grela, M.A.; Szaciłowski, K. Ground and excited state properties of alizarin and its isomers. Dyes Pigments 2014, 103, 202–213. [Google Scholar] [CrossRef]
- Zittel, H.E.; Florence, T.M. Voltammetric and spectrophotometric study of the zirkonium-Alizarin S complex. Anal. Chem. 1967, 39, 320–326. [Google Scholar] [CrossRef]
- Springsteen, G.; Wang, B.H. Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chem. Commun. 2001, 17, 1608–1609. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, D.; Liu, X.; Wu, K.; Wan, C. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode. Colloid Surf. B 2009, 70, 15–24. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Wang, K.; Zheng, X.C.; Yang, X.D.; Li, H.H. Application of alizarin/graphene-chitosan modified electrode on detection of human telomere DNA. Chin. J. Anal. Chem. 2013, 41, 481–487. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Ding, Y. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Anal. Chim. Acta 2014, 835, 14–36. [Google Scholar] [CrossRef]
- Cordeiro, C.R.B.; Marques, A.L.B.; Marques, E.P.; Cardoso, W.S.; Zhang, J. Ultra trace copper determination by catalytic-adsorptive stripping voltammetry using an Alizarin Red S modified graphite electrode. Int. J. Electrochem. Sci. 2006, 1, 343–353. [Google Scholar]
- Schumacher, S.; Nagel, T.; Scheller, F.W.; Gajovic-Eichelmann, N. Alizarin Red S as an electrochemical indicator for saccharide recognition. Electrochim. Acta 2011, 56, 6607–6611. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Zhang, H.Y. Layer-by-layer assembly: From conventional to unconventional methods. Chem. Commun. 2007, 14, 1395–1405. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, G.H.; Wang, Z.Q.; Zhang, X.; Peng, M.L.; Wu, L.Z.; Tung, C.H. To Combine Precursor Assembly and Layer-by-layer Deposition for Incorporation of Single-charged Species: Nanocontainers with Charge-selectivity and Nanoreactors. Chem. Mater. 2014, 17, 6679–6685. [Google Scholar] [CrossRef]
- Zeng, G.H.; Xing, Y.B.; Gao, J.; Wang, Z.Q.; Zhang, X. Unconventional layer-by-layer assembly of graphene multilayer films for enzyme-based glucose and maltose biosensing. Langmuir 2010, 26, 15022–15026. [Google Scholar] [CrossRef]
- Sato, H.; Okuda, R.; Sugiyama, A.; Hamatsu, M.; Anzai, J.I. Loading and release of methyl orange in layer-by-layer assembled polyelectrolyte films. Mater. Sci. Eng. C 2009, 29, 1057–1060. [Google Scholar] [CrossRef]
- Paul, P.K.; Hussain, S.A.; Bhattacharjee, D.; Pal, M. Adsorption of cationic laser dye onto polymer/surfactant complex film. Chin. J. Chem. Phys. 2011, 24, 348–352. [Google Scholar] [CrossRef]
- Bujdák, J. Layer-by-layer assemblies composed of polycationic electrolyte, organic dyes, and layered silicates. J. Phys. Chem. C 2014, 118, 7152–7162. [Google Scholar] [CrossRef]
- Peters, R.H.; Sumner, H.H. Spectra of anthraquinone derivatives. J. Chem. Soc. 1953, 3, 2101–2110. [Google Scholar] [CrossRef]
- Gautrot, J.E.; Hodge, P.; Cupertino, D.; Helliwell, M. Experimental evidence for carbonyl-π electron cloud interactions. New J. Chem. 2006, 30, 1801–1807. [Google Scholar] [CrossRef]
- Gautrot, J.E.; Hodge, P.; Cupertino, D.; Helliwell, M. 2,6-Diaryl-9,10-anthraquinones as models for electron-accepting polymers. New J. Chem. 2007, 31, 1585–1593. [Google Scholar] [CrossRef]
- Yu, J.; Meharg, B.M.; Lee, I. Adsorption and interlayer diffusion controlled growth and unique surface patterned growth of polyelectrolyte multilayers. Polymer 2017, 109, 297–306. [Google Scholar] [CrossRef]
- Advincula, R.C.; Fells, E.; Park, M.K. Molecularly ordered low molecular weight azobenzene dyes and polycation alternate multilayer films: Aggregation, layer order, and photoalignment. Chem. Mater. 2001, 13, 2870–2878. [Google Scholar] [CrossRef]
- Bechtold, T.; Fitz-Binder, C.; Turcanu, A. Electrochemical characteristics and dyeing properties of selected 9,10-anthraquinones as mediators for the indirect cathodic reduction of dyes. Dyes Pigments 2010, 87, 194–203. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Zhang, Y.; Li, F.; Kou, D.; Lutkenhaus, J.L. Layer-by-Layer Assembly and Electrochemical Study of Alizarin Red S-Based Thin Films. Polymers 2019, 11, 165. https://doi.org/10.3390/polym11010165
Ma W, Zhang Y, Li F, Kou D, Lutkenhaus JL. Layer-by-Layer Assembly and Electrochemical Study of Alizarin Red S-Based Thin Films. Polymers. 2019; 11(1):165. https://doi.org/10.3390/polym11010165
Chicago/Turabian StyleMa, Wei, Yanpu Zhang, Fei Li, Donghui Kou, and Jodie L. Lutkenhaus. 2019. "Layer-by-Layer Assembly and Electrochemical Study of Alizarin Red S-Based Thin Films" Polymers 11, no. 1: 165. https://doi.org/10.3390/polym11010165
APA StyleMa, W., Zhang, Y., Li, F., Kou, D., & Lutkenhaus, J. L. (2019). Layer-by-Layer Assembly and Electrochemical Study of Alizarin Red S-Based Thin Films. Polymers, 11(1), 165. https://doi.org/10.3390/polym11010165