Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Materials
3.2. Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lazarevic, D.; Aoustin, E.; Buclet, N.; Brandt, N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 2010, 55, 246–259. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Facts. 2017. Available online: http://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf (accessed on 20 February 2018).
- Villanueva, A.; Eder, P. End-of-Waste Criteria for Waste Plastic for Conversation; European Commission: Luxembourg, 2014. [Google Scholar]
- Cholake, S.T.; Rajarao, R.; Henderson, P.; Rajagopal, R.R.; Sahajwalla, V. Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Clean. Prod. 2017, 151, 163–171. [Google Scholar] [CrossRef]
- Gharfalkar, M.; Court, R.; Campbell, C.; Ali, Z.; Hillier, G. Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Manag. 2015, 39, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Agamuthu, P. Challenges in sustainable management of construction and demolition waste. Waste Manag. Res. 2008, 26, 491–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafourian, K.; Mohamed, Z.; Ismail, S.; Malakute, R.; Abolghasemi, M. Current Status of the Research on Construction and Demolition Waste Management. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Yuan, H. A SWOT analysis of successful construction waste management. J. Clean. Prod. 2013, 39, 1–8. [Google Scholar] [CrossRef]
- Paranhos, R.S.; Cazacliu, B.G.; Sampaio, C.H.; Petter, C.O.; Neto, R.O.; Huchet, F. A sorting method to value recycled concrete. J. Clean. Prod. 2016, 112, 2249–2258. [Google Scholar] [CrossRef] [Green Version]
- Plastic ZERO—Public Private Cooperations for Avoiding Plastic as a Waste Action 4.1 Market Conditions for Plastic Recycling. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=PLASTIC_ZERO_action4.1_market_for_recycled_polymers_final_report.pdf (accessed on 9 June 2018).
- Directive 2008/98/EC of the European Parliament and of the Council. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 27 November 2017).
- Alam, O.; Billah, M.; Yajie, D. Characteristics of plastic bags and their potential environmental hazards. Resour. Conserv. Recycl. 2018, 132, 121–129. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Bakhshandeh, G.-R. Recycling of PVC wastes. Polym. Degrad. Stab. 2011, 96, 404–415. [Google Scholar] [CrossRef]
- Basak, A. Environmental Pollution. In Environmental Studies; Basak, A., Ed.; Dorling Kindersley Pvt. Ltd.: Delhi, Indian, 2009; pp. 107–180. [Google Scholar]
- Ajayi, S.O.; Oyedele, L.O.; Bilal, M.; Akinade, O.O.; Alaka, H.A.; Owolabi, H.A. Critical management practices influencing on-site waste minimization in construction projects. Waste Manag. 2017, 59, 330–339. [Google Scholar] [CrossRef] [PubMed]
- European Commission—Press Release. Plastic Waste: A European Strategy to Protect the Planet, Defend Our Citizens and Empower Our Industries. Available online: http://europa.eu/rapid/press-release_IP-18-5_en.htm (accessed on 20 February 2018).
- Nasrullah, M.; Vainikka, P.; Hannula, J.; Hurme, M.; Kärki, J. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Manag. 2014, 34, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Asgari, A.; Ghorbanian, T.; Yousefi, N.; Dadashzadeh, D.; Khalili, F.; Bagheri, A.; Raei, M.; Mahvi, A.H. Quality and quantity of construction and demolition waste in Tehran. J. Environ. Health Sci. Eng. 2017, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Esckilsen, B. Global PVC markets: Threats and opportunities. Plast. Addit. Compd. 2008, 10, 28–30. [Google Scholar] [CrossRef]
- Van Elburg, M.; Sack, N.; Woest, A.; Peeters, K.; Spirinckx, C. LOT 32/Ecodesign of Window Products Task 2—Market Analysis. Available online: https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/window-products/task2-lot32-windows-final.pdf (accessed on 25 May 2018).
- Western European Window Market: Clear Upward Trend. Available online: http://www.windowsactive.com/western-european-window-market-clear-upward-trend/ (accessed on 25 May 2018).
- Ciacci, L.; Passarini, F.; Vassura, I. The European PVC cycle: In-use stock and flows. Resour. Conserv. Recycl. 2017, 123, 108–116. [Google Scholar] [CrossRef]
- Sekito, T.; Matsuto, T.; Tanaka, N. Application of a gas-solid fluidized bed separator for shredded municipal bulky solid waste separation. Waste Manag. 2006, 26, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Kolská, Z.; Polanský, R.; Prosr, P.; Zemanová, M.; Ryšánek, P.; Slepička, P.; Švorčik, V. Properties of polyamide nanofibers treated by UV-A radiation. Mater. Lett. 2018, 214, 264–267. [Google Scholar] [CrossRef]
- Tranter, J.B.; Refalo, P.; Rochman, A. Towards sustainable injection molding of ABS plastic products. J. Manuf. Process. 2017, 29, 399–406. [Google Scholar] [CrossRef]
- Yeh, S.-K.; Agarwal, S.; Gupta, R.K. Wood-plastic composites formulated with virgin and recycled ABS. Compos. Sci. Technol. 2009, 69, 2225–2230. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M. A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-word case study. Sci. Total Environ. 2017, 601–602, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
Stream | ABS | PA | PC | PE | PET | PMMA | PP | PS | PVC | Un 1/d 2,* |
---|---|---|---|---|---|---|---|---|---|---|
1 | 33.91 | 9.44 | 0.52 | 8.44 | 1.10 | 0.64 | 21.45 | 0.09 | 9.69 | 14.71/30.39 |
2 | 0.74 | - | - | 28.42 | 0.12 | - | 48.27 | 5.66 | 0.05 | 16.73/49.27 |
2* | 4.91 | - | - | 6.55 | 0.32 | 0.61 | 53.01 | 3.73 | 0.15 | 30.72/62.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahtela, V.; Hyvärinen, M.; Kärki, T. Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization. Polymers 2019, 11, 69. https://doi.org/10.3390/polym11010069
Lahtela V, Hyvärinen M, Kärki T. Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization. Polymers. 2019; 11(1):69. https://doi.org/10.3390/polym11010069
Chicago/Turabian StyleLahtela, Ville, Marko Hyvärinen, and Timo Kärki. 2019. "Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization" Polymers 11, no. 1: 69. https://doi.org/10.3390/polym11010069
APA StyleLahtela, V., Hyvärinen, M., & Kärki, T. (2019). Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization. Polymers, 11(1), 69. https://doi.org/10.3390/polym11010069